N IBBLING AT ASSEMBLY LANGUAGE

PART XIII: IF MY
MEMORY SERVES
ME RIGHT

Learn how to use the soft switches and built-in
routines necessary to program with auxiliary
memory.

y first home computer had 4

kilobytes of memory. At the

time, 4K was plenty. After
all, T could write and run some nifty BASIC
programs and play Microchess. Who could
ask for anything more?

But as my knowledge and interest in
programming grew, I started hungering for
more memory. In 1981, [purchased a used
48K Apple II Plus. Forty-cight thousand
bytes of memory seemed like a banquet. For
dessert, I added a language card to increase
the memory to 64K. At that point, I thought
I had it all.

I soon realized, however, that much of
that 64K is inaccessible:

* The disk operating system (DOS 3.3) uses
over 10K.

® The zero page, stack and screen buffer
use 2K.

® The High-Res graphics screen uses 8K.
* The 16K (language) card is inaccessible
from Applesoft BASIC

The first 12 installments of Scott Zimmer-
man’s column, Nibbling at Assembly Lan-
guage are now available as The Beginner’s
Guide to Apple I Assembly Language, a
special book and disk package. See the
Products Order Card in this issue for details.

FIGURE 1: Apple 128K Memory Map

Moaiwe [

163

! Legend:

[

T
»t,..m

$F300

Hi-Res Page 2

Hi-Rez Page 1

Text Screen

Input Buffer
Stack|

Zero Page

Language Card

$FFFF

Main Memory

Used by
ProDOS

Other
Reserved

Space

Bank-Switched

"

Bank-Swatched
RAM

$BFFF
$BFOO

13.5K 32K
———1{s6000
8K
34000 $4000
8K Double Hi-Res| 8K
$2000 120060
6K 30800 6K $0800
o Toxt Scroen
0300 {80 Cot) A
35500 $0200
$0200 Stack
$0100 30100
$0000 eSS EAge $0000

Auxiliary Memory

sl

Free
User Space

TABLE 1:
MEMZAP Keyboard Commands

Command

Rewrn
Right-Arrow
Left-Arrow

Increments the memory value at the cursor. Note. The period 1s on the same

Decrements the memory value at the cursor. (Note: The comma is on the same
key as the less-than sign (<), which suggests that the value will decrease)

Fraction

Toggles between main memory and auxiliary memory.
Next page (256 bytes) of memory.
Previous page (256 bytes) of memory

Up-Arrow Higher in memory by 4K (S1000 bytes)
Down-Arrow Lower in memory by 4K (S1000 bytes).
‘ 1550 K Move cursor on memory page This sclects the particular byte within the memory
[page.
Period
() key as the greater-than sign (>), which suggests that the value in memory will
become greater than it is.)
Comma
[1)
‘ Slash
1) nibble

Question mark Decreascs the memory value at the cursor by 16

h

Escape Exits MEMZAP

Increases the memory value at the cursor by 16 ¢$10), 1.c.. increments the high

For Applesoft programmers, the full-meal
deal of 64K is just an appetizer of 36K or,
if your program uses High-Res graphics,
just a small snack of 28K.

In 1984 I bought a 128K Apple lic. By
that time. of course, [knew what 128K
meant for Applesoft BASIC programmers:
still only 36K. For assembly language pro-
grammers, however, a 128K machine con-
tains a full-course meal of 86K of free user
space (see Figure 1).

If you haven't learned how to chew and
swallow 86K of memory, you can easily get
indigestion. This article will help you digest
the extra bytes in auxiliary memory. Once
you understand the concepts and have writ-
ten an application or two, you'll be cating
big bytes of memory with case.

128K APPLE MEMORY MAP

The memory map in Figure 1 shows the
main and auxiliary memory available for
your assembly language programs, but also
reveals the difficulty in using auxiliary
memory: it has the same range of addresses
as main memory.

You can access (read from or write to)
main memory with operations like LDA
$0900 or STA ($19).Y. but how do you load
a byte from S0900 in auxiliary memory or
store a byte to the auxiliary memory address
contained in $19?7 How does the 6502/65C02
know which bank of memory to access? The
answer is the I/O soft switches.

These soft switches are located on page
SCO (SCONN to SCOFF) of memory (sce
Figure 1). You are already acquainted with
at least three soft switches:

1. SCO00 1s the keyboard switch: its high
bit is clear (0) 1f no key has been pressed.
and sct (1) if a key has been pressed.

2. SCO010 is the keyboard strobe (accessing

it clears the high bit of the keybouard
switch at SC000).

3. $C030 is the speaker switch: accessing
it toggles the diaphragm of Apple’s built-
in speaker.

If you arc an experienced Applesoft
BASIC programmer, you may recognize
several graphics switches. For example.
POKE —16304.0 (cquivalent to STA
SCO50) switches the Apple from text mode
to graphics mode, while POKE —16302,0
(STA $C052) switches from mixed graphics
and text to all graphics. POKE —16299.0
(STA $CO055) switches from display screen
1 to display screen 2.

Certain soft switches (see the next section)
let you read and write data between main
memory and auxiliary memory. Further-
more, the ROM in a 128K Apple provides
two helpful memory management routines:
MOVEAUX, for transferring data from
main memory to auxiliary (or vice versa),
and XFER, for transferring program con-
trol from a main memory routine o an aux-
ihary memory routine (and vice versa).

Soft Switches

The following is an explanation of the
major soft switches for using auxiliary
memory. | use the more descriptive soft
switch labels given by Glen Bredon in his
article, “'Using Auxiliary Memory in the
Apple Hle and Hc™™ (Nibble Vol. 6/No. 5)
and. in some cascs. my own labels. Apple's
labels, however, are given in parentheses in
the following discussion.

AUXREAD (RAMRD, on) at $C003
switches from reading main to reading aux-
iliary memory. After you access AUX-
READ (with an STA $C003 operation), any
data fetched by the 6502/65C02 from with-
in the memory range $0200 to SBFFF comes

from auxiliary memory rather than main
memory. Unfortunately, this applies not
only to variables, arrays and other program
data, but also to machine language instruc-
tion code. In other words, accessing AUX-
READ switches program control from main
memory (if the program counter is in the
range $0200 to SBFFF of main memory) to
auxiliary memory. This means that a pro-
gram running in main memory can't directly
read (fetch) data from the auxiliary bank of
memory. Various approaches exist for over-
coming this problem, one of which you will
see later.

MAINREAD (RAMRD, off) at $C002 is
the opposite of AUXREAD. After an STA
$C002 command, any data accessed by the
microprocessor in the range $0200 to
$BFFF comes from main memory. And
concomitantly, the program counter pro-
ceeds to load instruction code from main
memory.

READFLG (RAMRD, flag) at $C013
provides a means of determining which of
these two switches is on, If MAINREAD
is on (which means that AUXREAD is off),
the high bit of READFLG is clear; if AUX-
READ is on (and MAINREAD is off), the
high bit of READFLG is set. Since your
program controls the memory space directly
with the soft switches, you don’t need to use
this flag. If you need to check the flag,
however, just do an LDA READFLG fol-
lowed by BPL THERE (to branch to label
THERE if the flag is clear) or followed by
BMI THERE (to branch to THERE if the
flag is set).

AUXWRT (RAMWRT, on) at $C005
sets the switch for writing to auxiliary
memory. The write switches (AUXWRT
and its opposite, MAINWRT) are casier to
use than the read switches, since changing
the memory bank for a write does not
change the memory bank from which the
6502/65C02 accesses program code. There-
fore, you can easily write to auxibary
memory from main, or writc to main
memory from auxiliary, just by accessing
the appropriate switch.

MAINWRT (RAMWRT, off) at SC004
sets the switch for writing to main memory.
WRITEFLG (RAMWRT, flag) at $C014
indicates which memory bank is selected for
writing. The high bit is clear if main
memory (MAINWRT) is selected and is set
if auxiliary memory (AUXWRT) is sclected.

STORESON (80STORE, on) at $SC001
allows access to the memory bank of either
text screen memory space (in the address
range $0400 to $0800); scc Figure 1), as
specified by the read/write soft switches.
Normally, however, STORES is off, and
you can only access the current display page.
When STORESON is written to (with a STA
$CO001 operation), the microprocessor then
accesses the text screen memory space speci-
fied by the read/write soft switches.

STOREBON (80STORE, off) at $C000
turns off the above switch, causing the

microprocessor to again access only the cur-
rent display-page memory space. You may
be disturbed that this switch has the same
address as the KEYBD switch for access-
ing keyboard input. But in practice, every-
thing works fine: use LDA $C000 to check
the keyboard input, and use STA $C000 to
turn off the STORES switch. Executing STA
$C000 does not actually store data at the lo-
cation, since the soft switch page is part of
ROM (read only memory).

STORESFLG (80STORE, flag) at SC018
gives the current setting of the STORESON
and STORESOF switches. The high bit of
STORESFLG is set when STORES is on
and clear when STORES is off.

AUXZP (ALTZP, on) at SC009 turns on
the zero page and stack (memory address
range $0000 to SO1FF) of auxiliary memory
for rcading and writing. The advantage of
keeping this memory range separate from
the range $0200 to SBFFF (selected with the
other read and write switches) is that rou-
tines in main memory and in auxiliary
memory can share the same zero page and
stack — allowing communication between
the routines and at the same time, allowing
them to access big blocks of data in differ-
ent memory banks.

MAINZP (ALTZP, off) at $C008 turns
on the zero page and stack of main memory.
ZPFLG (ALTZP, flag) at $C0016 gives the
current setting of the AUXZP and MAINZP
switches. If the high bit of ZPFLG is set,
AUXZP is active; if the high bit is clear,
MAINZP is active.

Memory Management Routines

In addition to the soft switches, Apple
ROM contains two valuable routines for
managing auxiliary memory: MOVEAUX
and XFER.

MOVEAUX at $C311 moves data (in-
cluding program code) from main to aux-
iliary or from auxiliary to main memory. To
use AUXMOVE, follow these steps:

1. Put the beginning address of the block of
memory you want moved in $3C,S3D
(using the standard low byte, high byte
order).

2. Put the end address of the block in
S3E.$3F.

3. Put the destination address in $42 $43.

4. Set the Carry (C) flag (with SEC) to
move data from main to auxiliary
memory, or clear the Carry (with CLC)
to move data from auxiliary to main
memory.

5. Do a JSR AUXMOVE.

AUXMOVE can be used to move program
data between memory banks and, more im-
portantly, to move part of your assembly
language program into auxiliary memory.

XFER at $C314 transfers program con-
trol (JMP) from the current bank of memory
{main or auxiliary) to the other bank (aux-
iliary or main). To use XFER, follow these
steps:

1. Store the new routine's starting address
at $3ED,$3EE (using the standard low
byte, high byte order).

2. Set the Carry (SEC) if the transfer is from
main to auxiliary memory, or clear the
Carry (CLC) if the transfer is from aux-
iliary to main.

3. Clear the Overflow (V) flag (with CLV)
to use the zero page and stack of main
memory. Set the Overflow (V) flag to use
the zero page and stack of auxiliary
memory. Since the 6502/65C02 lacks an
SEV (Set Overflow) opcode, you must
use a trick: the command BIT SFF58.
The ROM location $FF58 contains the
value $60 (the opcode for RTS), which
equals %01100000. Since the BIT com-
mand transfers bits 6 and 7 of memory
into bits 6 (the N-flag) and 7 (the V-flag)
of the Processor Status Register, BIT
SFFS58 sets the Overflow flag, as desired.

4. Do a JMP XFER. This is the same as
JMP ADDRESS (when ADDRESS is
stored at S3ED,$3EE), except that pro-
gram control goes to the opposite mem-
ory bank, as specified by the program,
rather than to the current memory bank.

Programming With Auxiliary Memory

Now that you know something about the
major soft switches and ROM routines for
managing auxiliary memory, you are ready
to apply your knowledge to assembly lan-
guage programming. Follow these general
program development steps:

1. Write and debug your routines in main
memory. Even though some (or all) of
your program will eventually reside in
auxiliary memory, you can avoid many
difficulties by first writing the subrou-
tines for main memory. In this way, you
can use standard debuggers and program-
ming aids to help you during program de-
velopment. Even the Monitor routines
accessed by CALL -151 are difficult to
use with auxiliary memory. You may
need to write some specialized drivers to
test your subroutines before assembling
them together in your final program. (A
driver is a short program whose only
function is to test a subroutine by initializ-
ing variables and preparing the computer
system for the subroutine call, and by
then calling the subroutine.)

2. Add the following to your main program:

a. Code to relay calls between main and
auxiliary memory.

b. A routine to move program parts to
their final addresses in main and aux-
iliary memory, using the ROM rou-
tines MOVE (SFE2C) and AUX-
MOVE (SC311). You may, for exam-
ple, have some subroutines in main
memory, some in auxiliary memory,
and a relay routine to make calls from
one bank of memory to the other.

¢. A routine to write data from on¢ bank
of memory to another.

d. A routine to read data from one bank
of memory to another.

3. Add lines to your assembly language
source code for calculating the starting
and ending addresses for MOVE and
AUXMOVE.

The best way to understand all of this is to

see an actual example.

MEMZAP

MEMZAP, shown in Listing 1, is a handy
utility for examining and changing memory.
Most of the program resides in auxiliary
memory, freeing main memory for your Ap-
plesoft BASIC programs or other applica-
tion. MEMZAP demonstrates the use of
most of the soft switches and the ROM rou-
tines discussed in previous sections.

MEMZAP requires a 128K Apple Ile, Ilc
or IIGS.

Entering the Program

Type the assembly language source code
of MEMZAP into your assembler/editor,
assemble the program, and save the source
and object codes to disk with the base
name MEMZAP. If you are entering the
program from the Monitor, when you get
to line 422 continue entering the bytes as
if they continued at address $OBEB, rather
than at $300. Save the program with the
command:

BSAVE MEMZAP,A$900,L$335

For additional help, see the Typing
Tips section.

Using the Program

To use MEMZAP, type BRUN MEM-
ZAP if it’s not in memory; or type CALL
768 from BASIC or 300G from the Moni-
tor, if the program currently resides in
memory. You'll immediately see the MEM-
ZAP screen, with a full page of memory
represented in both hex and ASCII form.
The keyboard commands that control MEM-
ZAP are shown in Table 1.

When you first BRUN MEMZAP, the
main memory is active. Press Return to
switch to auxiliary memory. This changes
only thc¢ major block of memory, from
$0200 to $BFFF, and does not change the
zero page or stack.

How It Works

I won’t take the time to explain all the
logic in MEMZAP, since most of it would
just be a review of information covered in
carlier articles. I will focus instead only on
aspects relating to the use of auxiliary
memory, and hope you take the time to study
the rest of the code.

The actual program starts at line 61 of
Listing 1, with a jump to MOVEPGM, the
routine for moving program parts into their
final running locations. I could have kept the
MOVEPGM routine at the beginning of the
program, but for convenience chose to add
it 10 the end.

The MOVEPGM routine is given in lines
386-413. The first segment moves the re-
lay and main memory routines into page 3
($0300). The second segment moves most
of the rest of MEMZAP into auxiliary
memory using the ROM routine AUX-
MOVE, as explained earlier. Notice that the
beginning address of the block to be moved
is the same as the destinaton (target) address
in auxiliary memory. Although this isn’t
necessary. it is convenient in this program.

The segment of MEMZAP that stays in
main memory is given in lines 422-460. No-
tice that even though this is part of the same
listing, the ORG has been reset to $300 (sce
line 420). Some assemblers will not support
multiple ORG statements; if you have a
question about it, check your user manual.
(The MicroSPARC Assembler 3.0 handles
multiple ORGs, but miscalculates the pro-
gram length after assembly.)

The page 3 code contains three short rou-
tines: RELAY initializes the 80-column card
by doing the equivalent of PR#3 (lines 422-
423). For some reason, the 80-column card
gobbles up but does not respond to the first
byte sent to it, so MEMZAP does a JSR
CROUT to sent a carriage return. Lines
425-431 follow the steps necessary (see
Memory Management Routines) to use
XFER for transferring control from main
memory 1o a routine in auxiliary memory.

MAINCALL is the entry point in main
memory for subroutine calls from auxiliary
memory. MEMZAP has only two routines
located in main memory, LOADBYT and
WRMSTRT (sce lines 455-460). Even
though these two routines are short, with
several long subroutines the same principles
would apply:

1. Each subroutine residing in main
memory and called by auxiliary memory
is assigned an even number, e.g. 0, 2,
4, 6 (sec lines 54-55 of Listing 1).

2. To call a routine (see lines 257-258), load
the X-Register with the routine number
and do a JSR CALLMAIN.

3. In main memory, each subroutine ad-
dress (minus one) is a member of an ad-
dress table (see ADRTBL, lines
452-453),

4. CALLMAIN, located in auxiliary
memory (see lines 350-358), saves the
Accumulator in the zero page (which
main and auxiliary memory share), and
then uses XFER to jump to MAINCALL
in main memory.

5. MAINCALL immediately calls
DOCALL (see lines 433 and 444-450),
which pushes the address of the desig-
nated main memory routine onto the
stack, and then jumps to the address of
the routine via an RTS. This works be-
causc an RTS is just like a JMP, except
that the effective destination is one byre
past the memory address on top of the
stack. That is why the address table (see
ADRTBL in lines 452-453) contains the
routine address minus one.

6. The RTS at the end of the subroutine in
main memory (¢.g., sec line 460) causes
a return to the address immediately af-
ter MAINCALL (see line 434).

7. MAINCALL uses XFER to transfer con-
trol back to auxiliary memory at the ad-
dress RETURN (line 358), which
contains a simple RTS.

In the above example, the program in aux-
iliary memory calls subroutines in main
memory, but making calls in the opposite
direction would work in an equivalent way.

LOADBYT has the simple task of loading
the Accumulator with a byte of memory
specified by the zero-page pointer (BYTE,
PAGE), which points to the byte address
of the MEMZAP cursor. LOADBYT is
necessary because a routine in auxiliary
memory can't directly read a byte in main
memory. If you tried a simple STA MAIN-
READ (the soft switch to read main
memory), program control would also
immediately revert to main memory, and
your Apple would go off into never-never
land. The program must instead read
memory of an opposite bank in an indirect
fashion: by jumping memory banks with
XFER, loading the desired byte, and jump-
ing back to the original memory bank.

WRMSTRT is not really a subroutine,
since control never returns to the caller. This
is just the way MEMZAP cxits through the
DOS vector $3D0, which is, of course, in
main memory.

MEMZAP has two valuable subroutines,
PEEKMEM and POKEMEM, whose func-
tion you should understand.

PEEKMEM (lines 254-263 of Listing 1)
reads a byte of memory, just like the PEEK
command in Applesoft BASIC. The address
of the byte it PEEKS is stored in $19.$1A
(designated BYTE and PAGE, respectively,
in MEMZAP). The routine starts (line 254)
by setting the offsct index to zero, but in
your applicaton program, you may want to
use the offset as a variable or an array in-
dex to access a block of memory. Line 255
checks AUXFLG, which is zero when we
want to access main memory, or SFF when
we want to access auxiliary memory. The
BIT opcode sets the Negative (N) flag of the
Processor Status Register if AUXMEM is
SFF (and the BMI branch in line 256 is
taken) or clears the N-flag if AUXMEM is
zero (and BMI in line 256 is not taken). If
the branch is not taken, the PEEK is in main
memory, and the program uses CALL-
MAIN to get the byte value from main
memory (with the routine LOADBYT). If
the branch is taken, the PEEK is in the aux-
iliary memory, and a simple LDA
(BYTE).Y gets the desired byte value into
the Accumulator.

The PEEKMEM routine exccutes an STA
STORESBOF to make sure that a read to the
auxiliary text page ($0400 to $0800) ac-
cesses the desired memory bank, rather than
defaulting to main memory. After getting the

byte. the routine executes an STA
STORESON to make sure that any screen
printing (through COUT) goes to the proper
memory locations.

POKEMEM (lines 265-273) also uses
AUXFLG to determine which memory bank
10 access. Writing to an opposite bank of
memory is simple compared to reading,
since the program can just use soft switches.
If AUXFLG is clear (for accessing main
memory), POKEMEM turns on the main
memory write soft switch with STA
MAINWRT (line 267), and then POKEs
(writes) the value in the Accumulator into
memory. After storing a byte, POKEMEM
accesses AUXWRT to make sure auxiliary
memory is reactivated. The routine also uses
STORESOF and STORESON to make sure
the POKE goes to the proper memory bank
of the display page.

Take a moment now to go back to the sec-
tion Programming With Auxiliary Memory
and see if you can follow cach step through
MEMZAP. Here is a summary of cach step:

1. I wrote and debugged MEMZAP in main
memory before using it in auxiliary
memory.

2. The following line numbers contain the
designated code:

a. Lines 350-358, 422431, and 433-453
relay calls between main and auxiliary
memory.

b. Lines 386-413 move program parts to
their final addresses.

c. Lines 265-273 write data from one
bank of memory to another.

d. Lines 254-263 and 459-460 read data
from onc bank of memory to another.

3. Line 414 (RELSTRT, for relay start)
gives the starting address of the routine,
which eventually resides at $300 in main
memory, and line 463 (RELEND, for
relay end) gives the end address. Line
62 (MEMZAP) gives the beginning ad-
dress of the data moved into auxiliary
memory, and line 380 (ENDATA) gives
the end address.

PROGRAMMING TIPS
Here are a few additional tips to help you
program with auxiliary memory:

1. During program development, you can
use a different ORG than the final one.
For example, the ORG of MEMZAP is
$900, but I used S9000 during most of
its development since some of my
programming utilities use the lower range
of memory. Then you can change it to
its final location after debugging.

2. If possible, use the same zero page and
stack for routines in main and in auxiliary
memory. As you can see, MEMZAP
keeps the same zero page and stack,
which facilitates transfer of data between
the two memory banks, and greatly sim-
plifies programming.

3. Use page 3 as an interface between main

and auxiliary if possible. This way, your
relay routines won't be overwritten by
Applesoft BASIC, which normally starts
at S0800 of main memory.

. For simplicity, use only the auxiliary
memory range from $S0800 to SBFFF.
Other banks of memory have free space
but they're harder to manage.

. If you want to use all regions of memory,
carefully read your Apple Ile or [Ic refer-
ence manual to understand the required
soft switches. Although more compli-
cated, the same basic principles apply.
. Most of these same techniques (soft
switches, move routines, and transfer
routines) can also be applied to program-
ming big memory cards, such as Applied
Engineering’s RamWorks. Check the
user's manual provided by the manufac-
turer for details.

7. To get the most from MEMZAP, you
may want to make some enhancements
or modifications:

a. Allow direct user input of bytes,
rather than just incrementing or
decrementing the nibbles.

M EMZAP is a handy

utility for examining
and changing memory.

b. Give a menu of commands at the bot-
tom of the screen.

¢. Let the user set the step size for step-
ping through pages of memory.

d. Madify the choice of input keys or the
layout of the screen display to suit
your personal tastes.

8. To use the 80-column card in your ap-
plications, carefully look over MEMZAP
lines 422-424 (initialization of the 80-
column card) and lines 336-338 (the
GOTOXY routine). Avoid moving the
cursor (with GOTOXY) to column zero.
Strange things happen unless you stay in
the range X >= 1 and X <=79

9. Using auxiliary memory exacts a price:
longer program development time and
slightly slower program execution. But
the additonal memory available for your
programs is usually worth the price.

REFERENCES

1. Bredon, G. **Using Auxiliary Memory
in the Apple Ile and Ilc,"" Nibble, Vol.
6/No. 5, pp. 76-80.

2. Apple Computer. Inc., Apple Il Refer-
ence Manual and Reference Manual Ad-
dendum: Monitor ROM Listings. See the
section entitled **Auxiliary Memory and
Firmware.”” (To do serious assembly
language programming on the Apple.
these reference manuals are essential.)

LISTING 1: MEMZAP

The Assendier 3 @

i D LR L L L

18 B L L R

%ierce Fule - WOMZAP

e

1 .

2 .

3 .

) .

3 .

3 .

7 .

8 .

9 .

10 .

il .

12 .

13

4 ORG
b

12 . WQUate

19

2 coeTR 1
2 vIRY ww
22 noR17 w
3 (281} wy
24 AL wu
% DO, 0w
26 AL n
27 VAL r
28 o™ 1
29 Dromove EQU
0 FNOMOVE KQU
3l TARGET Lou
32 ACCUM]
33 XHEG rQu
14 AFERADR 1QU
k) xcYso L)
i STORTIOF QU
i 24 STORESON LQU
38 MAINART QU
" AT wv
“w STROSE "wu
! MOWOYT (U
a2 ure nu
9 SITNORY EQU
4" MITIN L
49 PENTAY W
“° Tapv w
47 How((1]
48 CROUT Qu
1l PROYYT FQU
50 cour rQu
51 mMove rQu
92 OUTPORT kQU
LB} sevee .
34 NLOACEYT (QU
35 NWRMG TRT (QU
%

L 24

.3

"
L)
. &« 8) o= Pl
.2 22 03 09 WA USR
(3] AD @4 €O KLVLOO® 1LDA
. 19 8 [24
(23 2C 10 &0 [124
(1] [~] o
(2 %0 o7 boc
(1] 29 OF AND
(1] c9 %8 OXAY e
7¢ D2 0% oNE
n A2 02 LDX
72 4C 38 @9 L
7 C9 95 oo cw
74 0Q o8 e
4] A5 01 LDA
76 2 99 9 QeGP e
” <« 98 M I
78 C9 88 ey Cwr
79 09 28 L
8 A9 FF LOA
L 3] 39 F2 LLH
L 3] C9 2a w2 Cwr
[2] Do o4 o
L) AS 0 LOA
[3] 30 EA 3
8¢ Cs &8 L o
(34 D2 02 -
(1] AS 10 LOA
89 D2 E2 ONE
w"w co c8 o e (e 14

D R

VENZ AP

by § Scott Z.mmermsn
Copyright (c) 1987
by MICroSPARC. Inc
Concord. WA 01742

MicroSPARC Assembler 3 @

P M s iessleesls et sases s acacaacianstnnsnbnntae

I Low 10 mewor,

"o Gerecal polirter

o2 Vertical tad save

Wi Morizontal tat save
819 Currest Dyte of page
$IA Curre~t page of rweor)
i Current cursor sddress
310 QWain. FlfoAus mennry
1313 Byte value save

24 Cursor horizontel

3¢ Nonitor ALL

LE18 Nonitor A2L

42 _Nonitor AAL

e 1Save accumulator

" :Save X register

380 Menory trans’er age
o .Keyboard ingut <har
W _Enable 8dc wen 3icCesy
100! Disadie $OC mew accens
o4 $Sa12¢h 1o wrile main
WS SSaitch 0 write due
wae Clear =ey>0481d strode
L3 13

$yie Rosline tramter

0w Set rormal viceo
2 Set inverse vider
394 Print (A.X)

1ress Cursor vertical tad
$rces Clear screen

1rost :Carciage return output
$FDOA Print byte in hex
SFDED :Character output

sFeac Monitor move routineg
SHE9S Output port (PRN)

o M3IN mory N numbers
2

liary wenory)

R R L L TR T LR

OVE PN Go mcee orogrem oarty
INIY Initialcze systes
xved Koy presyed?

KLYLOOP No loop mere

STROBE Clear beydosro strode
k(e LIs 1t Tomer case’”
OKAY INO. okey o s
#%13811211 Convert to upper Ccave
v on (ESC (Quit)7

MME D iNo, check next

VNWRMS TR T 1Call BASIC warmatart
CALLMAIN : thru main memory
"9y _Right arrom (CTRL-U)’
oL Mo, cneck next

" Ye3 InCrerent one
CNGPACE Ge change page
XEvLOCP

2183 Le’t srrce (CTML.0)°*
-2 No chech mest

(2%} Yes. decremert pige
[

A Dowr arecw (CTRL J)
o) No. chelh reat

036 iYes. go te ores &K
OPr

e Up arrom (CTRL.K)?
e .No, cheth At

o Yes. g0 10 nert &
LS K pressed?

0%Al
@9A3
09A5
D947
29A8

eare
es12
oa1s
es1e
anim
DALA
ealc
oALF
@A20

23355838432

AL

*
L

9
LAl

or
er

$£$32

L1

"oy

CHGY

MV12

oy

sesesesesssnnene

« WLMIAP 3.Dr0.times (alsc

e
.o
(3}

[S

.

L1}
9e
Gy
o
w2
LERTY
CHNGV
80
NOKEY
AUXFLG
s
AUXF LG
COPACE2
KEYLOOP

N0, proceed
i7e3. ~Creeent D te
:Go to (Nerge Dyte

.J presses’
No. proceed
Yes €0 1o prev byte

N pressec?
No proceed
Yes next parograoh

1 pressea?’
No. proceec
(Yas, prev oaragraph

Period pressed’
No. chech rect
Yos. increeent val
2Co: Chenge value

Comra drevves?
Mo, Ccheed At
Yes cCecrerwnt

Sias™ prescec!
No chech nert
Yes. ‘mcr by 310

Quest . on prevvea?
No checs next
.Yes decr Ly 310

RETURN pressed?

:No, no key selected
.Get cyrrent fiag va!
:Togg'e he 'lag
iSdve new va've

Go do nee page

Ge: rect wey

I Y

Sesessessssesaseesesettstattiaaactaciatatsntrsnnnn

ONGPAGE STA VaL

Low
<r

[4¢4

rALL

"co
e
VAL
Low

VAL
POXIMEW
PRANTCURS
PNASCLL

OOPALL
0oPALr2

Lo A1 RRIN]

ADRLOOP

1ox
Loy
ISR
JeR

:Save change valLe
to aco

Put here 107 test
‘Softsmitch poage’
:No. change p
ils value negativel
.Yes maxe page own
No., make page high
Always

Decramant page
Save new Dage
Save new &

:Save <hange
Clear cursor
_Restore chrsge value
Brepare to 264
ASS value 270 acdreny
Save new valwe
Print rew sédrens
Print Aee cvivor
:Save ndd value
Get current byte
Prepare 10 200
Add change volve
Poke now byte v
Print cursor there
Print ASCI! value

vars o Jero

the mewory pIge

Cur1or agdresy

alue

10 = Main serory
Peine t.tle
cage accresses
status
Prial revery page
Print mewary Cyraor
From INIY
Set horerontel
Set verticel
Move cursor there
.Set inverse video
Print titie message

Peint

:Set normal mode
.Set horizontel
:Set vertical
Move curvor threre

Print Oy -l .re

.l
GOTORY

GENPYR4 Y

Cet address

.Set 08

:Start page bovdary
.Set LOR

IS13IL verticol poy
:Set horiz value
Move cursor there
:Ready for next
;Get MOB of address

LISTING 1: MAMZAP (continued)

203
206
207
208
209
210
FI
212
23
214
215
218
2
218
219
220
221
222
223
224
228
226
227
228
229
2%
m
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
245
250
251

Jes

OA22

A4
LLRY
ears
QATA
ATC
oAy

oAs2

PABL

oe
41
A
w0

L
10
o0
(4]

0w
19
o
DA
"0
19

0z
[]
A3

e
1
40
oC
124

ta]

124

o8

k2

F2

FO
r2

0B
ce

co

F2

$8

LDX
JSR
1LDA
JSR
cLc

PRASCIE

CHEMID

CHMKCTRL

AUXPEEK

GENPTR
PRNTAX
.
cour
GENPTR
510

GENPTR
ADA LOOP

rsi0
CrixMiD
SETINV

VAL

4320
#101100000
AsCouT
380
CHECTRL
SETINV

VAL

VSAD- 540
YLe1100000
ASCOUY
VAR

L

AUXFLG
AUXPFEK
UNLOADRYT
CALLMAIN

STYORE BOF
(BYTE) ¥
STOREBON

STOREEON

SETINY
ADORS
aYTr
GETBYTAR
PREYTE

L2

2z
GOYOXY
FSTATHSG
ISTATWSG
VESSACE
PRMENST
e

822
GovoxY
NACRMSG
NACRMSG.
NESSAGE
PHNTADR

.Get LOB of adoress
Prant A X in hex
Get & colon

Prepare for add
(ACO 16 (312) to adr

:Save resuit
‘No. proceed
.Ind PRNTADR
Init index

Save as byte

.Get the byte & tad
Print o dbyte in hex
:Go orint ASCII char
Restore byte

More bytes on page?
Yes, go to next

No, end of page

.Get vertical pos
Cet horiz indesx
Get noriz valve
Move for GOTOXY
Move cursor there
.Restore byte value
in 1om range?

No. g0 check mig
Set inverse video
4

Move to normal
Adjust bits
Peint it
Migrange?

(No, go check ctr!
(Set inverse video
‘Restore value
Prepare to add
JAdjust to print
JAQjUst bits
Prine it
(Cred char

range

range

(< space)?

NO. go output it
It 2 periog

Make

‘Which memory?

Ausillary

;Call LOADBYT
thru =ain menory

.Turn off cispiay select
.Get wenory

Turn on display select
.fnd of PEEXWEM

Main or ausiliary?
Auriliary

.Set for main write
Zero otfset

Ture off display select
Save result

Set for auxiliary
;Select display

LEnd of POXKEMEM

($et Inverse video

(Set BYTE

Get current byte. tad
Print a byte in hex
Set normal video

Set cursor position
Print message

Print sesory status
:5et cursor

iPrint message

Print current address

%01 cursor

s it main or sux?
Auxiliary
Nain

Always

309
310
in
312
313
314
315
316
317
318
319
320
321
322
323
324
328
326
327
328
329
330
3
332
333
334
335
33e
337
38
339
340
341
342
343
PR
345
346
347
348
349
350
351
352

354
155
356
357
358
359
360
361
362
363
164

365
366

367
368

369
370

3n
372

373
374
375
376

377

QAF6
QaFs
QAFA
QAFD
QAFF
esol

0804
0606
oBo7
0808
0809
0B0A
o808
080D
OBOE
0810
eB12
0B14
0B1S
0817
0BlA
es18
OB1E
0821
0823

0824
0826
eB27

0B82A
es2c
0B2F
0630
[EF
9834
0837
0838
0B3A

o838
VB30
0B3E
0B3F
oBal
oBas
0646
oBa9
0B4acC

084D

085S
0856

oBs8
0856C

0873
0874

0B7D
0B7E

06887
oBss

0892
0893

o898
0BA3

0BAB

0883
0BBS
L1
oes9

088D
0BBF
0BC1
@BC3
9BCS
e8c7
0BCY
o8BCB
@8CD

9BDO
0802
0BD4
0BD6

a4
[2]
oF

Q3
23

24
82
1E

24

FE

37
(2]

EE
14

co
DA

F9
AE
Fa
ES

ES
F2

FS
EC

E1l
AR

4
ES5

oA
13
23
20
3A
30
43
46

PRNTADR LDX 308 ;Set cursor

LDY ®22
o8 JSR GOTOXY iMove cursor there
LDX ADDRS iGet current address
LDA ADDRS +1
F9 JSR PRNTAX Print AX in hex
GETBYTAB LDA BYTE :Get current byte
LSR :Divide by 16
LSR
LSR
LSR
cLe :Prepare to add
ADC n& ;Start at top
TAY .Save as vertical
STY VERT (Save result
LDA BYTE ;Restore byte
AND #T00@81111 [Toss out HOI
TAX Make it an index
STX MORIZ iSave result
08 LDA HTAB.X :Get horiz pos
TAX :Move for GOTOXY
(L] JSR GOTOXY Move cursor there
(] JSR PEEKMEM 1Get memory
STA VAL ;Save value
RTS :Exit from GETBYTAB
GOTOXY STX CH iSave horizontal tad
TYA :Set vertical tab
F8 JWP TABV :Go move cursor
MESSAGE STX GENPTR :Set message pointer
STY GENPTR+1 ;Do HOB
LDY ®® Init the incex
MSGLOOP LDA (GENPTR) .Y :Get character
BEQ MSGEND Quit it zero
FD JSR couT
INY :Go te next char
BNE MSGLOOP iBranch always
MSGEND RTS JEnd of NESSAGGE
CALLMAIN STA ACCUM iSave accumuliator
cLe iSet for main memory
Cwv :Clear V for main memory
LDA AMAINCALL :Set address In main mem
03 STA XFERADR
LDA AMAINCALL/
03 STA XFERADR+1
(=] JMP XFER :Go to rtn in main mew
RETURN RTS ‘Return to caller
B R R R R T L
« Data .
teesiessessscessiessestriettiestasssatansanasannns
C5 TITLENSG ASC " WEMZAP
C1 DO A0
BRX
A@ BYLINE ASC "by S. Scott Zirwmerman®
AQ D3 E3 EF
AQ DA E9 ED
F2 ED EL EE
BRK
ED STATMSG ASC "Memory "
F9 Ba
BRK
F8 AUXMSG ASC "Auxiliary”
E9 E1 F2 F9
BRK
ES NAINMSG ASC "Main -
AQ AD AD AR
BRK
E4 ADRMSO ASC "Address $°
F3 F3 8A a2
BRK
00 HTAB DFC 7,10,13 16 19,22,25 28
16 19 1C
26 DFC 32 35,38 .31 44,47 ,50,53
2F 32 35
38 HASC DFC 57.58,59,60.61.62,63.64
3E 3F a0
4q DFC 66.67,68,69.70.71,72,73
47 48 a9
ENDDAT EQU +-!
tesceccscccccccccacstascsssranes ccceces
« Routines to Ove Progr parts: .
ceeressressssssraisestatereterassranarassnananananay
MOVEPGM LDA HRELAY :Move short main
STA TARGET iSave target
LDA HRELAY/
STA TARGET+1
LDA RRELSTRT ;Set starting
STA BEGMOVE
LDA RRELSTRY/
STA BEGMOVE=+]
LDA MRELEND :Set ending
STA ENDNOVE
LDA ERELEND/
STA ENDNOVE+1
Loy =@ iPrepare for WOVE
FE JSR NOVE iMove it
LDA #MENZAP ;Move pgm to asuxiliary
STA BEGNOVE
STA TARGET Make target same adrs
LDA BMENMZAP/

LISTING 1: MEMZAP (continued)

405
406
4Q7
408
4a%
412
411
412
413
414

o8ps
@BDA
@BeC
@BDE
QBED
Q8E2
0BES
@BES
a8Es

0
a3
B2
3€
o8
3F

1
Qe

Q3
95
8E

3A
FE
FF

o3
o3

c3
03

FE
FO

LE]

03
(]

03

03

E 03

c3
03

03

STA
STA
LDA
STA
LDA
STA
SEC
JSR AUXMOVE
JMP RELAY
RELSTRT EQU «

BEGMOVE+1
TARGET«1
NENDDAT
ENDMOVE
NYENDDAT/
ENDMOVE +1
iSet tor MAIN->AUX

:Start progran

eeceessesssacesstansaastesteetransreterttrannnanns
. Routines for main memory (at $300) .

etecesrestsseessascteanaestesetnstneseattrananenne

ORG 3300 :Put in user memory

RELAY LDA ¥3 ;Set to 80-column card

JSR QUTPORT ;0o PRA3

JSR CROUT :To Init 80-col card

SEC :Set for auxiliary

cLv :Clear tor main 2P

LDA SMEMZAP :Store address of rtn

STA XFERACR

LDA MMENZAP/

STA XFERADR«1

JWP XFER .Go to the routine
MNAINCALL JSR DOCALL Do the call

SEC :Set for auxiliary

cLv :Use main zero page

STA ACCUM :Save accumulator

LDA RRETURN .Set for return to asux

STA XFERADR

LDA RRETURN/

STA XFERADR+1

LDA ACCUM .Restore accumulator

INP XFER :Go to auxiliary memory
DOCALL LDA ADRTBL+1 X ;Get address of routine

PHA JPush on stack for call

LDA ADRTBL. X ; through RTS

PHA

LDA ACCUM iRestore accumulator

LDX XREG iRestore X register

RTS cJump to routine
ADRTBL DFC LOADBYT-1,LOADBYT-1/

DFC WRMSTRY .1, WRMSTRY-1/

454 eccceccecscesmssscssenstssesssrmsaraccnoasencnse .
455 ©033E 20 %8 FC ISR HOME Clear screen

456 0341 80 01 CO STA STORESON iTurn on cisplay select
457 0344 4C D3 03 JNP 3300 {Go to BASIC warmstart
888 3 geeesessssssssscissscessesveesciecemcceeccccenano- .
455 0347 81 19 LOADBYT LDA (BYTE).Y .Get byte from main
46@ 0349 62 RTS
a61
462 ENDMAIN EQU -
163 RELEND EQU RELSTRT+ENDMAIN-RELAY
P80 Errors
END OF LISTING 1
KEY PERFECT 5.0
RUN ON
MEMZAP

CODE-4.0

ADDR#

CODE-5.0 ADDRH -

4267DB92 0900 - 094F 2919
9F5F4BS6 0950 - 099F 255E
D70278F5 09A0 - O9EF 288F
4596A380 09FQ - OA3F 2543
D456C588 OA40 - OABF 2523
FFAA2DF9 0A90 - OADF 270C
14471007 OAEQ - 0B2F 276F
16E97DB8 0B30 - 0B7F 2A06
1F895142 0880 - 0BCF 264D
E7377833 0BDO® - OCIF 2741
A369A993 8C20 - oc34 0cz2e
DA9EC48B = PROGRAM TOTAL = 0335

