ULTIRA FAST PIX

SECOND FEATURE

se this convenient

ampersand routine to save and retrieve Hi-Res screens at

lightning speed.

here are two ways to approach loading and saving Hi-

Res screens on the Apple: the wait-and-see method and

the let’s see it now method. One way leaves you look-
ing at a blank screen as your disk drive cranks around and finally
loads the picture. The other way is the Ultra Fast Pix way. It loads
Hi-Res pictures four times faster than ProDOS. In fact it can load
a picture in about 560 milliseconds when reading multiple pictures.
If you prefer to load data instead of pictures, Ultra Fast Pix loads
8K or more of data at high speed.

To display a Hi-Res slide show, 17 pictures stored on a disk can
be reviewed in 9.5 seconds from a standing start (if you can see
that fast!). A single picture is loaded in about 700 milliseconds,
including drive startup. Compare that with these times: DOS 3.3

- 10.5 seconds; ProDOS — 3.0 seconds: and Fastpix — 2.0
seconds.

Ultra Fast Pix uses a novel technique introduced by Ken Manly's
**Fastpix'" in Nibble Vol. 3/No. 2. The Fastpix program loads Hi-
Res pictures quickly, but not fast enough for me. In Ultra Fast Pix,
I changed the disk format so it converts disk bytes on the fly. The
load time has been reduced to about a third of what can be achieved
with the original Fastpix program.

The demonstration program shown in Listing 1 illustrates a typical
use. Place an initialized disk in drive 2. Running the program will
create 17 simple Hi-Res pictures and store them in Ultra Fast Pix
format on the disk in drive 2. Note that the process of storing Ultra
Fast Pix data on a disk destroys any previous contents. The pro-
gram then initializes both Hi-Res pages. After you press Return,
the speaker beeps and a Hi-Res picture is loaded first into page |
and then into page 2. While the pictures are being loaded, the screen
switches are used to display the other page. This gives the effect
of snapping the pictures onto the screen. After 17 pictures are
shown, the program beeps again and control returns to BASIC when
you press Return.

ENTERING THE PROGRAMS
Key in the Applesoft program shown in Listing 1 and save it with
the command:

SAVE ULTRA.FAST.DEMO

If your system has only one drive, change **D = 2" in line 250
to “*D = 1" and change ''DRIVE 2" in line 280 to ""DRIVE 1"".

If you have an assembler, key in the source code from Listing
2, save it and assemble it using ULTRA.FAST as the object file
name. If you are using Key Perfect and your assembler does not
store zeros in the object file buffer for the .BS pseudo-opcode (or
equivalent, such as DFS or .DS), enter the Monitor with CALL
—151 and perform the following commands:

76E4:9
76E5<76E4 . 76FEM
77FF:9Q
75D4:9
79D5<79D4 . 79FEM
7A40:0
T7A41<7A40 TATEM

If you are using Key Perfect (regardless of assembler capabilities),
BLOAD ULTRA.FAST and BSAVE it again using the command
shown in the next paragraph.

If you don’t have an assembler, key in the hex code from List-
ing 2. If you are using Key Perfect, zero the areas of memory
reserved with .BS pseudo-ops with the Monitor commands shown
above. Save the program with the command:

BSAVE ULTRA.FAST,A$7500,L$600

Because the program is self-modifying, it is important that you
save the program before you run it. For help with entering Nibble
programs, see the directions in the Program Listings section.

USING ULTRA FAST PIX IN YOUR PROGRAMS
When you BRUN ULTRA.FAST, an ampersand command is set
up. The calling syntax is:

&C,N,P,.D

FIGURE 1: Disk Track Formats

Normal disk track

Sel f-sync Address Self-sync Data field Self-sync Address Self-sync Data field Data
bytes field #1 bytes #1 (256 data bytes field #2 bytes #2 (256 data field

bytes) bytes) #16
Ultra Fast Pix disk track

Address
field #1

Self-sync Data field #a1l

bytes

Self-sync
bytes

(4 096 data bytes) Sectors $E and $F (unused)

where C is the command to read or write (R,W); N is the picture
number (with values of 0-16); P is the Hi-Res page number (with
values of 1 and 2); and D is the disk drive (with values of 1 and 2).
To experiment with Ultra Fast Pix in your own programs, start
by initializing a test diskette using either INIT with DOS 3.3 or
the Filer under ProDOS. Now start the program by entering:

BRUN ULTRA.FAST

The program will load at $7500 and the ampersand vector will point
to the beginning of the machine language program.

Type HGR to display Hi-Res page 1. Now load any Hi-Res pic-
ture from one of your own disks by typing:

BLOAD picture,A$2000

Insert the test diskette in drive | and try saving the picture by typ-
ing &.W.O.!.l. Next, type HGR to clear the Hi-Res screen, then
reload the picture by typing &R,0,1,1. You're now ready for more
pictures.

Creating a Picture Diskette
To create a picture diskette with up to 17 pictures, follow these

steps:

- Initialize a diskette using cither DOS 3.3 or ProDOS.

- BRUN ULTRA.FAST to load and initialize the program.

. BLOAD picture,A$2000 to load your Hi-Res picture.

. Type &W,N,1,D to save a picture, where N is the picture num-
ber (0-16) and D is the drive number. For instance, &W,0,1,1
will save the picture as picturc O on drive 1.

5. Continue steps 3 and 4 until all of the desired pictures are stored.

For example, to read picture 0 onto Hi-Res page 1 from drive

W N -

FIGURE 2: Byte Translation

$96 $97 $9A $98B
Disk bytes

$00 1)1 $02 $03
Translated bytes
(from DOS table)
Resultant
picturc bytes

$00 $10 $83

1, you would type &R,0,1,1. To save picture 5 from Hi-Res page
2 to drive 2, you would type &W,5,2,2.

PROGRAM OVERVIEW

Ultra Fast Pix gets its fast reading ability in two ways. First, it
uses one sector per track, which contains 4,096 bytes ($1000) of
data. (These 4,096 screen bytes are translated and written to disk
as 5,462 bytes.) Second, it converts from disk bytes (which con-
tain 6 bits of information) to data bytes (which contain 8 bits) as
part of the disk reading process.

Disk Fundamentals

Before getting into details, let's review some disk fundamentals.
The outermost track is track 0. From here stepping inward, the head
can be moved to about 132 positions, only a quarter of which can
be used as tracks. (This is because closer spacing would cause data
to be mistakenly read from adjacent tracks.) DOS 3.3 and ProDOS
both use the *‘even steps’” as tracks. (When the head is moved out-
ward as far as it will go, this position is defined as track 0.)

The disk speed is 300 rpm or 200 milliseconds per revolution.
A disk byte can be written to disk every 32 microseconds, so the
track capacity is theoretically 6,250 bytes. The real capacity is less
than this because other bytes must be present to allow detection
and synchronization of the data. For instance, both DOS 3.3 and
ProDOS have 4,096 bytes of data per track.

DISK STRUCTURE

The structure of an ordinary disk track is shown in the upper dia-
gram of Figure 1. It begins with a number of special **self-sync™
bytes, which are used by the drive to align itself with an actual byte
boundary. Since the data on a disk is nothing but a long stream
of ones and zeroes, without the self-sync bytes there would be no
way to tell where to begin reading (or writing).

After the self-sync bytes is the first address field, which corre-
sponds to sector $00 on the track. It contains some information that
the operating system uses to determine which sector is which. Next.
there are some more self-sync bytes, and then the first data field.
The data ficld begins with a three-byte header, followed by the data
itself, followed by a three-byte trailer. A normal data field con-
tains 256 data bytes. There are actually more bytes than this on
the disk, however, as I'll explain in a moment.

After the first data field are some more self-sync bytes, and then
the second address field, and so on until the end of the track. There
are 16 sectors and, therefore, 16 address and data ficlds on each
track.

The structure of an Ultra Fast Pix disk track is slightly different,
as shown in the bottom diagram of Figure 1. It starts with the same
self-sync bytes and address field, but the data field is 4,096 data
bytes long, and there is only one data field. This leaves a little extra
space at the end of the track (where sectors $E and $F would nor-
mally be) but the object here is speed, not maximum storage space.

When Ultra Fast Pix stores a picture on the disk, it uses two adja-

FIGURE 3: Ultra Fast Pix Memory Maps

DOS 3.3
$00 -
Zero Page
$100 +—

Stack
e —
| Keyboard Buffer

$300 ——
400 Page 3
$ Text Display
Pag
s800 | 282 1 o
Available far
| Applesoft
$2000 T Res
Page 1
$4000 Hi-Res
P
LOMEM: $6000 |—28¢ 2
Applesoft

Variables

HIMEM: $7500 ——————
Ultra

Fast Pix

$7800 | ro8ram

Ultra Fast Pix
Data and
Buffers

DOS 3.3

$9600

Note: When the program is started, HIMEM: and LOMEM: are set as shown, depending on the operating system.

ProDOS

00 -
S:OO F;ero Page - ~W
Stack

$200 e —
Keyboard Buffer

$300
i Page 3
’ Text Display
P 1
s800 — 55— —
Available for
Applesoft
el 1 Res |
Page 1
34000 Hi -Res
p
LOMEM: $6000 |—28° 2
Applesoft

| Variables
;P'oDOS Catalog
| Buffer
Ultra
Fast Pix

Program . N
$7800 —2ET20
Ultra Fast Pix
Data and
Buffers

ProDOS

HIMEM: $7100

$7500

$9600

cent tracks to hold the 8,192 bytes of picture data. Each track holds
half of the picture. The address field of sector zero is left on the
disk, and the new, large dara field is written right after it, over-
writing the normal disk fields. This is why it is important to use
a blank disk to store your pictures on; any other data on the disk
is destroyed.

HOW DISK BYTES ARE WRITTEN

Interestingly, due to hardware limitations, an Apple floppy disk
drive is not capable of reading and writing all of the 256 possible
byte values, nor is any other floppy disk on the market. And yet,
we do store data that contains all the possible values. This is accom-
plished by encoding the data into a form that requires the use of
fewer byte values. Both DOS 3.3 and ProDOS use a form of encod-
ing known as "6 and 2,"" which requires 342 disk bytes to represent
256 actual data bytes. Thus, each data field on a normal disk really
contains 342 disk bytes, which are translated back into 256 data
bytes when they are read.

Ultra Fast Pix uses its own encoding technique, which is slightly
different from the one used by DOS 3.3 and ProDOS, though it
uses the same translation table. It requires four disk bytes for every
three data bytes, resulting in 5,462 disk bytes in the one large data
field (the last byte contains only 2 bits of information). Figure 2
shows an example of how the bytes are translated.

A full description of the various encoding techniques is beyond
the scope of this article, but if you are interested there is a very
good explanation in the books Beneath Apple DOS and Beneath
Apple ProDOS by Don Worth and Pieter Lechner, available from
Quality Software.

DETAILED PROGRAM WALKTHROUGH
SETUP

When Listing 2 is BRUN, the SETUP routine (lines 2040-2760)
sets the ampersand vector to the PARAM routine entry point. Next,
the READ tables are set up using calculations on data from a sin-
gle table instead of additional lengthy tables.

To set HIMEM, a check is made to identify the operating sys-
tem. For DOS 3.3, HIMEM is simply set to the beginning of the
program, and LOMEM is set just above Hi-Res page 2 at $6000.

For ProDOS. however, it’s not as easy. ProDOS butfers may
be active, so all files are closed. The ProDOS bit map is sct up
next. The bit map is a 24-byte field starting at address SBF58. A
bit in the map is set for every page of mémory in the lower 48K
being used, starting with page zero. The pages in use are numbered
sequentially starting with bit 0 in $BF58. So, for example, if SBF58
contains $CF, then locations $00-$7FF are in use, except for pages
2 and 3.

To make room for the catalog buffer in ProDOS, HIMEM is set
an extra $400 bytes below the beginning of the program. During
a CAT or CATALOG command, ProDOS uses memory locations
$7100-$74FF, which are below the program. LOMEM is set to
the same location as under DOS 3.3. The program memory map
now looks like Figure 3.

PARAM

The beginning of the PARAM routine (lines 2800-3410) is the
entry for the ampersand vector. When an ampersand is encoun-
tered in a program line, control passes through the ampersand vec-
tor to PARAM. The Accumulator contains the next character, and
further characters are read by calling CHRGET at $B1.

After entry, the routine determines the command type (Read or
Write) and saves this on the stack. Applesoft routines are used to
get the rest of the parameters (Picture, Page and Drive) and check
them for validity. The parameters can be numbers, variables or
formulas.

SYNTAX ERRORs or RANGE ERRORs are dealt with using
the appropriate Applesoft error handlers. This means that all errors
can be handled from BASIC using ONERR GOTO.

All of the parameters are pushed onto the stack after checking.
The stack is used here 1o keep the zero page untouched until it is
swapped with the REGSAV area. During program development,
allocating zero page variables for DOS 3.3 and ProDOS became
such a headache that I knew there must be a better way. When

SWAP is called, the current zero page and the REGSAYV area trade
places. This technique positions zero page variables very neatly.
ProDOS naturally saves the default slot in a different place than
DOS 3.3. Under DOS 3.3, slot 6 is saved as $60 in location SSF8.
This is convenient because it can be used as an index in the drive
addresses. However, ProDOS simply saves slot 6 as $06, so it must
be multiplied by 16 before it is saved in the register SLOT. The
parameters are then pulled from the stack and saved in the new
zero page arca and program flow jumps to the appropriate READ
or WRITE routine.

READ

The READ routine (lines 3450-3810) scts a counter called
READCT to allow several reads with incorrect data trailers. The
START and STOP addresses are set to the lower half of the appro-
priate Hi-Res page. When the correct data is read for the first 4,096
bytes, the track is advanced by one, and the second 4,096 bytes
are loaded into the upper half of the Hi-Res page. Persistent disk
crrors are handled by the ERROR routine. If the second track read
is okay, the drive is urned off, zero page is restored, and control
returns to the Applesoft program.

WRITE

The WRITE routine (lines 3850-4090) is similar to the READ
routine except that the data is first **pre-nibblized."" The NIBBLE
routine divides the 4,096 bytes of picture data into six-bit chunks
and then translates them into disk bytes. There is no error check-
ing to ensure that valid data was written to disk. Therefore, a disk
that is write-protected will appear to save a picture.

SKTRK
SKTRK (lines 4130-4610) starts the drive and then waits for the
drive to turn about one-half revolution so the speed is stabilized.

If the drive has already been turning, the wait is skipped.

The SKABS routine is called to position the drive head at the
correct track, and to read a disk address. If the track on the disk
address matches the desired track, and the correct sector (always
0) is found, the routine exits. Sometimes, though, the head stepper
misses steps. There is no reason to recalibrate if the routine knows
where the head is positioned. If no disk address can be read, how-
ever, the head recalibrates by moving outward two tracks (unlike
DOS 3.3). (Any unnecessary head movement wastes time; it is only

o move two tracks to get the stepper motor back in phase.)

At this point, RDADDR should be able to read a valid address.
Two counters keep track of the maximum number of recalibrations
(CALIB) and the number of times that a wrong track is read. When
these counts are exceeded, the disk ERROR routine is called.

WR40%

WR4096 (lines 4690-5160) is a time-critical routine. If you make
program maodifications, make sure that no page crossing occurs.
Also, if any of the zero-page variables are reallocated to non-zero
page locations, this will also change the timing. The time for each
instruction appears on the right-hand side of the comment field in
the listing. This is convenient for counting cycles.

When WR4096 is called, the disk is moving and the correct disk
address has been read. The drive is configured for writing and begins
writing 40-cycle self sync bytes. The time between one LDA
DRQ6L,X instruction and the next must be exactly 40 cycles. Five
self sync bytes should be sufficient, but a few more won't hurt.

After the self syncs are written, the 40-cycle bytes must blend
to 32-cycle bytes. To do this, the data in the buffer is written to
disk in 32-cycle bytes. (The data was originally 4,096 bytes, but
the conversion from cight-bit bytes to disk bytes containing six infor-
mation bytes turns this into 5,462 disk bytes, plus the three header
and three trailer bytes.)

The routine continues writing the buffer data in 32-cycle inter-
vals until a zero is detected. Since the buffer contains the disk data,
the only zero in it is the one at the end. If the drive is switched
to read too quickly when the last byte is written, the last byte would
be cut in half, making it unreadable. DOS 3.3 solves this problem
by not checking trailers. Since checking trailers is the only way
to detect a bad read, this last byte is important.

NIBBLE

The NIBBLE routine (lines 5200-6100) formats the data in prepa-
ration for the WR4096 routine. The pointers to the start of the
“*nibblizing’* buffer are set, and the three data header bytes (SDS,
$AA and $AD) are loaded in. The header bytes and trailer bytes
in the buffer make the WR4096 timing simpler.

In line 5340, the conversion process starts. Sets of three picture
bytes are converted to four disk bytes. In the first picture byte, the
upper six bits are stripped and used to index into the disk byte table.
The bottom two bits of the first picture byte and the upper four
bits of the second picture byte are combined, and again used as
indexes to the disk byte table. Similarly, the next two picture bytes
are converted. After 4,096 bytes are converted in this manner, the
last bytes placed in the buffer are the trailer bytes (SDE, $AA and
SEB) and a zero to allow easy end-of-buffer checking by WR4096.

RD4096

The RD4096 routine (lines 6180-7020) must also be located so
that no page crossing occurs within the routine. The routine is acti-
vated when the disk is spinning and the proper disk address has
been read. When reading starts, self sync bytes are under the drive
head. After the self sync bytes pass, the data header must be verified.

After verification of the data header ($D5, $AA and SAD), the
5,462 disk bytes are read. This part of the routine does the oppo-
site of the WR4096 routine. Four disk bytes are quickly turned into
three picture bytes; this is done on the fly. It's a little easier to write
disk read routines because strict conformance with 32-cycle reads
is not necessary. The only requirement is that the time between
one LDX DRQS6L instruction and the next must be 32 cycles or less.

This routine, like the ProDOS routine, uses self-modifying code.
It isn’t faster, but it does save a register.

The normal method of reading from disk is LDA DRQ6L,X,
where the X-Register contains the slot. This doesn’t leave enough
time for reloading registers. Instead, after the instruction for the
slot is modified, an LDX DRQG6L is used. The X-Register then
serves as an index to the picture byte in a lookup table. (Remem-
ber, since a disk byte contains only six bits of real information,
a lookup table is used to convert it.)

After conversion and packing, the data is stored using the PAGE
pointers. Since the routine reads 5,461 bytes in four-byte cycles,
it can check for completion in just one place. The last byte con-
tains just the last two bits. The data trailer (SDE, $AA and SEB)
is checked now to ensure that **disk slip"* didn’t occur during this
read. If the trailer is not correct, the Carry is used to flag an error.

RDADDR

The RDADDR routine (lines 7080-7550) reads a disk address
and verifies it as valid. The address header sequence ($D5, SAA
and $96) is looked for first. Once a valid address header is detected,
the volume, track, sector and checksum are read. These are writ-
ten in a less dense format than the disk data. Two disk bytes are
read and merged together using the odd bits of the first disk byte
ANDed with the even bits of the second disk byte, to form onc
data byte. These values are saved for later use and the checksum
is verified.

Next, the address trailer bytes (SDE, SAA) arc verified. Any
errors are flagged with Carry set. Theoretically there should be
three trailer bytes (SDE, $AA and SEB), but the routines that write
addresses in DOS 3.3 and ProDOS both have a bug that chops off
the $EB before it is completely written. The problem has been solved
the easy way — forget the SEB.

Listing 1 for Ultra Fast Pix
ULTRA.FAST.DEMO

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
270

280
290

300
310
320
330
340
350
360

370
380
390
400
410
420

430
440
450
460
470
480
490
500

510

520
530
540
550
560
570
580
590
600
610

620

REM srevessonursvossnsonesrs
REM ¢« ULTRA.FAST.DEMO .
REM « .
REM ¢+ COPYRIGHT (C) 1987 =
REM + BY MICROSPARC, INC -
REM + CONCORD, MA 01742 -

REM txensevvsovsvevsvtvene

REM COMMAND STRUCTURE
REM &C N,P.D
REM C=COMMAND ("R™ OR "W")
REM N=PICTURE NUMBER (@ TO 16)
REM P=HIGH RES PAGE NUMBER (1 OR 2)
REM D=DISK DRIVE (1 OR 2)
ONERR GOTO 620
PRINT CHRS (4):"BRUN ULTRA.FAST"
DS = CHRS (4):XS = 140:YS = 96:P2 = 6.29
A= 90:D =:2:P = 2
TEXT : HOME : VTAB 12: HTAB 12
VTAB 12: HTAB 10: PRINT "INSERT INITIALI
ZED DISK"
VTAB 14: HTAB 10: PRINT "
AND"
VTAB 16: HTAB 10: PRINT " PRESS RETURN T
O START";: GET KS$: PRINT
REM +---- CREATE PICTURES
FOR N =0 TO 16
HGR2 : HCOLOR= 3: HPLOT XS + A.YS
IF N < 10 THEN 400
FOR TH = @ TO P2 STEP .03
R=A+ COS ((N - 8) « TH)
X=XS+R=+* COS (TH):Y =YS - R+ SIN
(TH)
HPLOT TO X.Y
NEXT TH
GOTO 460
FORS =0 TON+ 3
TH=S = P2/ (N + 3)
X = XS 4+ A+« COS (TH):Y = YS - A« SIN

INTO DRIVE 2

(TH)

HPLOT TO X.Y

NEXT S

REM +---- SAVE PICTURES
& W,(16 - N) . P.D

NEXT N

REM +---- SHOW PICTURES
HGR2 : HGR : HOME

VTAB 22: HTAB 5: PRINT "PRESS RETURN TO
VIEW PICTURES":: GET KS$: PRINT

POKE - 16302,0: POKE - 16304,0: POKE -
16297 .0

PRINT CHRS (7)

FOR N = 08 TO 16

POKE 49235 + (3 - P),0

& R,N.P.D
P=3-P

NEXT N

POKE 49235 + (3 - P).,0 —

PRINT CHRS (7)

GET Z$: PRINT

HOME : TEXT : VTAB 12: HTAB 12: PRINT "T
HAT'S ALL FOLKS!™: END
ER = PEEK (222): HOME : TEXT : VTAB 12: PRINT
“"AN ERROR HAS OCCURRED": PRINT : PRINT "
RETURN TO TRY AGAIN, ESCAPE TO QUIT";: GET
Z$: PRINT : ON ZS = CHRS (27) GOTO 610:

POKE - 16302.A: POKE - 16304.0: POKE

- 16297,0: RESUME

END OF LISTING 1

KEY PERFECT 5.0

RUN ON
ULTRA. FAST
" CODE-5.0 ADDR¥ - ADDR¥ CODE-4.0
ADSEQ895 7500 - 754F 267¢
44A280AD 7550 - 759F 25€D

AB435C2A 75A0 - 7SEF 247C
B52FD77C 75F8 - 763F 25CF
4381230E 7640 - 768F 2932
B@3C5A15F 7690 - 76DF 27F6
0B9135DF 76E0 - 772F 2457
187E1660 7730 - 777F 28B8
CEAD948F 7780 - 7ICF 2700
A3C254F1 7700 - 781F 2CBA
30FFS59E7 7820 - 786F 2082
62C31830 7870 - 78BF 2773
946945E8 78CO - 790F 2919
3F56824C 7910 - 795F 2A17
9F6867AC 7960 - 79AF 2AEF
81A99BA4 79B0 - 79FF 2798
D227ACCF 7A00 - T7A4F 2850
624EBABB 7A50 - 7A9F 01D3
C9B1F310 7AAQ - TAEF 2802
FB23A67F 7AF@ - 7AFF 0653

UL

29F72855 = PROGRAM TOTAL =

Listing 2 for Ultra Fast Pix

ULTRA.FAST
1000 . ULTRA FAST
1018 .
1020 . COPYRIGHT (C) 1987
1030 - BY MICROSPARC. INC
1040 . CONCORD . WA 01742
1050 « S-C NACRO ASSEMBLER 1. 3
1060 .
T S T P T [t s A
1080
1090 -« ADDRESSES
1100

81-

0300 -
03F5.
05F8-
6000 -
BEDD .
BE3C-
BEYD.
BEDO-
8F00-
BF58.
BF94
DECY-
DEBE .
E6F8-
F2E9.-
F6ES
FBOD
FCASB -
FDED-

ar-
0s.

coso
Cogo-

ces2-
Ce83 -

1110 ORGEY _£EQ 381
1120 WARM33 .EQ $300
1130 ANPVEC .EQ 33F5
1140 SLOT33 .EQ s5F28
1150 P2END .EQ 56000
1160 NARWPR EQ SBEQD
.EQ $BE3C
1180 GOSYST .EQ sBE7O
11990 SCLOSE .EQ $BEDO PRODOS BASIC SYSTEN CLOSE
1200 GLOBAL .EQ $BF O PRODOS GLOBAL PAGE
1210 BITNAP EQ sBFS5S8 PRODOS NEMORY USAGE
1220 LEVEL £Q sBr9e PRODOS SYSTEN LEVEL
1230 SYNTAX .EQ SDEC? SYNTAX ERROR ROUT INE
1240 CHKCOM EQ SDEBE CHECK FOR COMMA - SYNTAX ERROR [F NOT
1250 GETBYT .EQ SE6FS EVAL A FORMULA TO AN INTEGER
1260 ERRHNOD EQ $F2E9 APPLESOFT ON ERROR GOTO HANOLER
1270 ILLQTY EQ SF6E6
1280 BEEP EQ $FBOD
1290 WAIT EQ SFCAS
1360 cour EQ $FDED

GET A CHARACTER

DOS 3 3 BASIC WARMSTART
AWPERSAND JUWP VECTOR

DOS 3.3 SLOT . 16

LONEN SETTING ABOVE PAGE 2
PRODOS BASIC MARNSTART
PRODOS OEFAULY SLOT
PRODOS COMMAND ENTRY

BITMAP

ILLEGAL QUANTITY ROUTINE
BEEP THE SPEAKER
NONITOR DELAY ROUTINE
QUTPUT A CHARACTER

1310

L1930 e--cveccreniniii ...

1330

1340 . PAGE 2ERO

1350

1360 «

1370 LONEM £Q 369 BASIC VARIABLE START (2 BYTES)

1380 STARY .EQ $68 BASIC START OF ARRAYS (2 BYTES)
1392 ENDARY £Q 360 BASIC END OF ARRAYS (2 BYTES)

1400 STSTR .EQ $6F BASIC START OF STRINGS (2 BYTES)
1410 HINEN £Q 373 BASIC HIGHEST MENMORY (2 BYTES)

1422 ONERR EQ sD8 ON ERROR GOYO ACTIVE WMEN 81T 7 SET
1438 .

1442 REG EQ sfa DEFINE REG AREA START

1450 .

1468 ADDTRY .EQ REG READ ADDRESS RETRY COUNTER

1478 BUFF JEQ REG+1 NIBBLIZED DATA BUFFER POINTER (2 BYTES
1488 CALIE FQ REG+3 DISK RECALIBRATION COUNTER

1498 CHECK EQ REG+4 DISK CHECKSUN TEMPORARY

1509 CURTRK .EQ REG+S

151@ DISKCK EQ REG+6 DISK CHECK. SECTOR, TRACK .VOLUNE (4 BYTES)
1528 ORIVE EQ REG+10 ORIVE PARAMETER

1530 MODIR .EQ REG+1l DISKX HEAD DIRECYION

1540 HODLY FQ REG+12 OISK PMASE ON DELAY BEFORE NEXT STEP
1550 MOMOVE EQ REG+13 DISK MEAD MOVENENT REQUIRED

1560 NERGE EQ REG+14 NERGE BYTE FOR RDADOR

1570 PAGE EQ REG+15 HI-RES PAGE TO READ/MRITE (2 BYTES)
1580 READCT EQ REG+17 TRACK READ RETRY COUNTER

159 RETRY EQ REG+18 READ RETRY COUNTER

1600 SLOT £Q REG+19 CURRENT DISK SLOT - 16

1610 SHOATA _EQ REG+20 TEMPORARY SHIFT DATA

1620 START _EQ REG+21 HIRES PAGE HI-BYTE FROM PARAM

1638 STOP EQ REG+22 HIRES STOP COUNTER (2 BYYES)

1640 STEPS £Q REG+24 DISK HEAD MOVEMENT SO FAR

1680 TRACX EQ REG+25 TRACK TO READ/WRITE

1660 .«

1670 REGNUM EQ TRACK-REG DEFINE HOW MANY REGISTERS WE NEED
1680 .
1699 essnssiciicaan
1700 .
1710 ATSECT .EQ DISKCK+1 CURRENT DISK SECTOR LOCATED

1720 ATTAK £Q DISKCK+2 CURRENT DISK TRACK LOCATED
1730 .

1740 ¢~ vvveveccscccsocccccccccccancnn

1750

1760 DISK DRIVE ADDRESSES

1770

1780 PHASE E£Q sCosd BASE OF HEAD STEPPER MOTOR PHASES
1799 PHOOFF EQ PHASE PHASE @ OFF

1800 PHOON EQ PHASE+<1 PHASE 8 ON

1810 PHIOFF EQ PHASE+2 PHASE 1| OFF

1820 PHION EQ PHASE+3 PHASE 1 ON

7500-

7585-
7587 -
7%89.
7588~
7580 -
758F -
7891 -
7593
7594-
7597 -
TB9A -
7590~
T89F -
75A1 -
T5A2-
T5A3.
75A4-
T5A7 -
78A0

AR22%52 % 2

A

78

€

70

7€

7

BF

8F

BE

BE

79

o0
E6

2180
2190

2220
2230
2240
2250
2260
2270
2280

2300
2310

2330

2370

2850
2860
2870
2889
28950
2990
2510
2920
2930
2940
2950

2970
2980

PH20FF L EQ
(EQ
£Q
(EQ
£Q
LEQ

EQ

SETUP LDA
STA

LDa

5TA

LOX

1 LDA

5Ta

STA
STA
STA
RYS

PHASE+ 4
PHASESS
PHASE+6
PHASE+7
scoss
sces9
SCABA
scess
scasc
$CO8D
SCO8E
SCO8F

$7500

: BEGIN wusT

BEGIN
APARAN
ANFVEC+1
‘PARAM
ANFVECs2
“sge
READSR , X

READ4R X

READ2R . X

READEL . X

READAL X

READ2L X

GLOBAL
a34C

300
LEVEL
SCLOSE-1
ascc

GOSYST
/BEGIN

MASK X

BITMAP X
BITMAP . X

PHASE 2 OFF

PHASE 2 ON

PHASE 3 OFF

PHASE 3 ON

DRIVE NOTOR OFF

DRIVE MOTOR ON

SELECT DRIVE 1

SELECT DRIVE 2

SHIFT MHILE WRITING/READ DATA

LOAD WHILE WRITING/READ WRITE PROTECT

READ
WRITE

BEGINNING OF
BE ON A PAGE WV

PACK IT AT THE TOP

SET UP AMPERSAND VECTOR

SET UP READ TABLES

GET STANDARD READ TABLE
SAVE FOR LATER

SHIFT RIGHT 2 PLACES

FORM 4R TABLE
SHIFT RIGHT 2 PLACES

FORN 2R TABLE
GET ORIGINAL AGAIN
SHIFY LEFT 2 BITS

FORM 6L TABLE
SHIFT LEFT 2 BITS

FORM 4L TABLE
SHIFY LEFT 2 BITS

FORM 2L TABLE
NEXT

CHECK IF PRODOS
JMP OPCOOE IF PRODOS
WUST BE DOS 3 3

SET SYSTEM LEVEL TO ZERO
WARK "ALL FILES®

“CLOSE™ CONMAND

LEGAL CALL

CLOSE 'EM

GET START OF PAGES USED

GET PAGE MOD 8

INDEX INTO BIT MASK
SET BIT MASK

HOLD T

GET PAGE AGAIN
DIVIOE 8Y 8

AND FIND BYTE TO SET

BYTE 1S INDEX
GET BIT MASK BACX
NARK PAGE AS USED

NEXT PAGE

BWEM)~1 ALL PAGES USED NARKED ?

/BEGIN

va

HINEN+1

STSTR+1
4

/BEGIN
HINEN+]
STSTR+1
FBEGIN
HINEM
STSTR
FP2END
LONEM
STARY
ENDARY
/P2END
LONEM+1
STARY+1
ENDARY+1

CHECOM
GETBRYT
vl

NOT YET

NOVE ANOTHER $400 FOR CAT BUFFERS

SET HINEM
SET START OF STRINGS
BRANCH ALWAYS

SET
SET
SET

HINEM
START OF STRINGS
HINEM TO BEGIN

SET
SET

LONEN ABOVE PAGE 2
LONEN

SET START OF ARRAYS
SET END OF ARRAYS
HIGH 8YTE

SET LOMEN

SET START OF ARRAYS
SET END OF ARRAYS

READ TMO TRACKS 7

CHECK WRITE

READ

SXIP AROUND

WRITE TWO TRACKS 7

GIVE SYNTAX ERROR

WRITE

SAVE COMMAND ON STACK

GEY NEXT CHAR

SHOULD BE A COMMA

GET DESIRED PICTURE NUNBER
TOO MIGH 7

GIVE QUANTITY ERROR

GEY IN X

DOUBLE IT

SAVE DESIRED TRACK ON STACK
NEED A COMMA HERE

EVAL PAGE

PAGE L 7

7501 -
7504
7506 -
7508+
7508 -

75€E@-
7SE1-
7SE2-
75E3-
75E4-

75E6-
5L7-
75E9-
7SEA-
75EC-
75€0-
T5EF -
75F1-
75F4&-

75K 7 -
75F9-
75FB-
75FD-
75FF -
7601
7603 -

7607-
7685
7698 -
760E -
7611
7613-
7615-
7617-
7615-
7618-
7610
761F-
7621
7623
7625-
7627~
7629-
7628
7620
7630-
7633
7635-
7637-
7639

763C.

763E- 8D 8

764) -
7644

7645-
7647.
7649-
7648-
764D-
764F -
7651
7654
7657-
T65A -
765C-
765E -
7660-
7662-
7664.
7665-
7667 -
7669-
766C-
766E -
7671-
7674-
7676
7679-
267¢

7670

A9

AD
9
o
AD

aa
o
(LY
oA
85

68
85
85
68
o
oo

4c

A9
a5

A9
85
AS
85

88
20
A9
85
AS
88

69
85

€6

20
L1

0
(1]

AS

DE
E6

79

o5

76
8

76
8

79

<o
79

77
76
Ly

3
nsze

"l
5
¥2
.5
7

SNAP
ORIVE

GLOBAL
vsac
-5

SLOTIS

sLor

START
TRACK

READ
MRITE
SYNTAX
ILLQTY

N
BASE OF PAGE ONE
BRANCH ALWAYS

SAVE PAGE ON STACK

JSR CHKCOM GET ANOTHER COMMA
JSR GETBYT WHICH DRIVE ?

DRIVE 1 7

YES

DRIVE 2 7

YES

GIVE A RANGE ERROR
GET DRIVE NUMBER

SAVE 1T

BRING IN OUR ZERQ PAGE

GET DRIVE
SAVE FOR LATER

« CHECK FOR PRODOS / DOS 3.3

CHECK PRODOS GLOBAL PAGE
1S 1T A Jup ?

YES - IT'S PRODOS

GET DOS 3.3 SLOT

WULTIPLY BY 16

THIS 1S OUR SLOT NOW

GEY PAGE

SAVE AS START

GET TRACK NUMBER

SAVE AS TRACK

GET CONMNAND

READ 2 TRACKS

WRITE 2 TRACKS

GIVE SYNTAX ERROR

GIVE TLLEGAL QUANTITY ERROR

$430 o---ccccccccccccccccretcccnrnnas

2990 BNE
3000 LDA
3010 BNE .
3020 .3 cPX
3030 BNE .
3040 Lm
3050 .4

3060

3870

3080 cPX
3890 BEQ
3100 cpx
e BEQ
3120 BNE
3130 8 TXA
3140 PHA
150 J5R
3160 PLA
3170 STA
3180 -

3190

3200 .

3210 LOA
3220 cwp
3230 BEQ
3240 LOA
3250 BNE .
3260 .51 LDA
3270 AsL
3280 ASL
3299 asL
3300 ASL
3310 52 STA
3320

3330 PLA
3340 STA
3350 PLA
3360 STA
3370 PLA
1380 BEQ
3390 BNE
3400 6 IHP
3410 7 Jup
3420 -

1440 .

3450 READ LDA
3460 STA
3470 1 LDA
3480 STA
1490 LDA
3500 STA
510 LDA
3520 STA
3s3e ORA
3540 STA
3550 ISR
3560 JSR
3s7e 8cC
3580 oEC
3550 BNE
1508 8EQ
sle 2 LDA
3620 STA
3530 3 LDA
3640 STA
3650 LDA
3668 ORA
3670 STA
3680 ORA
3690 STA
3700 INC
371e ISR
3720 ISR
3730 8cc
3740 DEC
3750 BNE
3768 .4 NP
3770 «

3780 .5 LDX
1790 LDA
1200 ISR
3810 RTS
3820 .

3830

3840 .

3850 WRITE LDA
3860 STA
1870 LOA
3880 STA
3890 ORA
1500 STA
3930 ISR
3920 ISR
3938 ISR’
3940 LOA
3950 STA
3960 LOA
3970 0RA
3980 STA
3990 e
4000 ADC
4010 STA
4020 JSR
4030 INC
4040 JSR
4050 JSR
4060 LDX
4070 LA
4080 ISR
4099 s
4100 .

Q11B ooceceenmnn
4120 .

4130 SKTYRAK LDA

$70P.1
SKTRAK
RD4396
.2
READCT
1
4
L3

READCT
509
PAGE
START
10
PAGE+1
¥SOF
STOP+1
TRACK
SKTRAK
RDAQ9S
5
READCTY
3
ERROR

sLor

DRMNOFF , X

SWAP

Asoe
PAGE
START
PAGE+1
nsie
STOP+1
NIBBLE
SKTRAK
WR4096
o0
PAGE
STARY
nsle
PAGE«1

0818
STOP+1
NIBBLE
TRACK
SKTRAX
WR4096
SLOT

SET NUNBER OF RETRIES
SET STOP ADORESS

SET UP PAGE

READ FROM THIS PAGE

SHOULD NOW BE $2F OR saF
THIS IS HALF OF PAGE
GET TO THE TRACK

READ 4096 BYTES

NO SLIPPED DISKS HERE
TRY AGAIN 7

YES

GIVE 'EM THME ERROR EXIT
SET RLTRY COUNTER

RESET PAGE LOW BYTE

DO SECOND MALF
SHOULD NOW BE $30 OR $5@

SHOULD NOW BE $3F OR $5F

NEXT TRACK

MOVE THE ARN

READ 4096 BYTES
THIS TRACK READ OKAY
TRY AGAIN 7

YES

GIVE DISK ERROR EXIT

GET sLoOT
TURN OFF THE ORIVE
RESTORE ZERO PAGE

-

SET PAGE LOW BYTE TO

GET PICTURE START
SETY PAGE MIGH BYTE
DO HALF OF IT

PRENIBSLE MALF OF PICTURE
MOVE TO THE T

WRITE HALF A PAGE

RESET PAGE LOW BYTE

GET START OF PICTURE
NOW IT'S THE MIDOLE

NO CARRY

ADD HALF A PICTURE
STOP HERE

PRENIBBLE OTHER HALF
NEXT TRACK

NOVE 10 1T

WRITE OTHER HALF
GET SLOT

DRMOFF X TURN OFF DRIVE

SNAP

RESTORE ZERO PAGE

Listing 2 for for Ultra Fast Pix

ULTRA.FAST (continued)
TEIF - AA a140
7680 @5 A arse
7682- A8 ai16e
7683- B9 89 CO a176
7686- BD BE C® 4184
7689 BD BC CO 4190
768C- A9 02 azed
768E. BS 03 azie
7690- AQ 08 4220
7652- BD BC CO a23d
7695. DD BC CO 4240 1
7696- DO 08 4250
769A-. 88 4260
7696- DO F8 4278
7690- BO 89 CO 4280
76A0. A9 F3 4299
76A2- 20 AB FC 4300
76A5 - AS OA 4310 2
76A7- 85 12 4320
76A9- BD 89 CO 4330
J6AC- 20 A3 78 4340 3
T6AF - 90 17 4350
7681- C6 12 4360
76831. DO F? 4370
7685- C6 03 4380
7e87- 30 28 4399
7689- A9 02 4400
7688- 85 05 4419
768D- A9 @@ 4420
TJ6BF - 20 01 79 4430
76C2- A9 @0 4440
76C4. 85 0% 4450
76C6- FO DD 4460
76C8- AS 08 4470 .4
76CA- €5 19 4480
J6CC. FO 0E 4450
76CE- 85 @5 4500
76D0- A5 19 4510
76D2- QA 4520
76D3- 20 @1 79 4530
76D6- C6 12 A540
76D8- D@ D2 4550
76DA- FO 05 4560
T6DC- AS @7 4570 5
76DE- D@ CC 4580
76€0- 60 4590
4600 .
T6EL- 4C 85 79 4610 6
4620 «
4630 «------
4640 «
45650
4660 .
%670
4680 «
- A9 00 4699 WR4096
- 8% 91 azee
A9 80 a7ie
85 02 a72¢
8D 8D CO 4730
B0 BE CO aY4e
A9 FF 4754
- 90 BF CO avee
DO 8C CO 4778
EA arse
48 a79e
68 4800
AQ 10 4810
48 4828 1
68 4830
20 48 77 4840
88 4850
- D@ FB ABép
- EA 4870
Ea 4880
EA 4890
81 01 4900 .2
FO 15 4910
9D 8D C@ 4920
DD 8C Cce 4930
c8 4940
Do 06 4950
€6 02 4560
EA 4970
LY 4580
00 €D 4990
EA 5000 .3
EA 5010
EA 5020
LA 5030
03 €7 5040
A0 02 5059 .4
1] 5660 .5
- D FD 5¢70
- BD 8E CO 5080
BD BC CO 5050
60 5100
5110 «
48 5120 6
68 513¢
S0 80 CO 5140
DO 8C CO 5150
o0 5160
5170 «
5180 «
5190 «
7754 A9 00 $200 NIBBLE
7756- 85 01 s21e
7758- A9 80 s220
TiISA. 85 @2 5230

TAX

CRIVE

TAY

DRSELY-1.
DRQ7L . X
DHO6L . X

LDA
LDA

.3
CaLln
6

n2
CURTRK
L
SKABS
Ll
CURTRK
BEQ 2

LDA ATTRK
CNP TRACK
BEQ 5
STA CURTRX
LDA TRACK
ASL

JSR SKABS
DEC RETRY
BNE 3

BEQ 6
LDA ATSECT
BNE 3

RS

ST700- .

ABUFMEM
BUFF
JEUFMEM
BUFF+1
DRQSH, X
DRQIL.X
ASFF
DARQ7H. X
DRQSL , X

¥s1a

(BUFF).Y
4

ORQBM X
ORQ6L . X

.3
BUFF+1

DRQ7L . X
DRQ6L . X

YBUFNEM
BUFF
LDA /BUFNEM
STA BUFF+1

KEEP IT IN X

ADD IN DRIVE SELECT

USE AS INDEX

Y SELECT ENABLE 1 OR 2
SET DRIVE FOR READING

ALLON TWMO RECAL IBRATIONS
SET RECALIBRATION COUNTER
MAIT 99 USEC FOR DATA CHANGE
GET SONE DATA

SANE 7

NO - [T CHANGED

DONE WAITING 7

NOT YET

TURN ON THE DRIVE

WAIT FOR 158 NSEC

USE NONITOR DELAY ROUTINE
TRY TEN TIMES

SET RETRY COUNTER

TURN IT ON

READ AN ADORESS

OKAY - WE HAVE ONE

TRY READING SONE MORE
NOTHING HERE 7

TRY RECALIBRATING

GIVE AN 1/0 ERROR
PRETEND WE'RE A LITTLE BIT OFF

WOVE HERE
MOVE THE HEAD TO TRACK ZERO
CURRENT TRACK IS NOW ZERO

ALWAYS
NHERE ARE WE 7
SANE 7

NE'RE HERE

NE'RE REALLY AT THIS TRACK
GET DESIRED TRACK
NULTIPLY BY TwWO

GET THE TRACK

NOVE THE HEAD AND TRY AGAIN
GIVE 1/0 ERROR

CHECX SECTOR
LOOK FOR SECTOR ZERO

USE THE DISK ERROR EXIT

« MAKE SURE THAT ROUTINE DOESN'T OVERLAP ON TWD PAGES

SET UP BUFFER POINTER

IGNORE WMRITE PROTECT
CONF IRN READ

MRITE A SELF SYNC BYTE
LOAD DATA

MRITE IT

WASTE 9 CYCLES

WRITE 16 NORE SELF SYNCS
MASTE 7 CYCLES

WRITE 40 CYCLE DATA
ANOTHER ?

YES

6 CYCLES TO BLEND TO 32

GET DISX DATA

AT THE END ?

WRITE DATA

SHIFT DATA

NEXT DISK DATA BYTE
FINISHED THIS PAGE 7
BUMP POINTER HIGH BYTE
WASTE 4 CYCLES

BRANCH ALMAYS
WASTE 8 CYCLES

BRANCH ALMAYS
MAKE SURE YOU WRITE 3EB

SET BACK TO READ

WRITE DATA
SHIFY DATA

cavaw

SET UP BUFFER POINTER

WNNNNWRNNANN AN NN B WN B WA B
w w

TIFA-
77FC-
77FE-

83=8283:828238888882%

A

LY

7A

kL)

LY

8
78
L]
78
8

ce

ce

5240
5259
5260
5279
5280
5290
5360
53190
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430

5440 .

5450
5460
5470
5480
5490

6370
6380

RDAQ96

o2

LE]

o4

MRTABL
(BUFF)
BUFF

-
BUFF+)
PAGE

PAGE+1
(PAGE) .
SHDATA

ASOF
SHDATA

SHDATA

WRTABL .
(BUFF) .
BUFF

BUFF el
(PAGE)
F$3F

WRTABL .
(BUFF) .
BUFF

BUFF«1
PAGE

.1
PAGE+1
1
SHOATA
rses

WRTABL ,
{BUFF),
BUFF

(BUFF) .
BUFF
FSAR
{BUFF),
BUFF

FSEB
(BUFF),
Burs
¥seQ
(BUFF) .

~ ~

<

-

Y

oY

Y

X
¥

Y

Y

Y

Y

NO INDEXING
WRITE DISK MEADER BYTES

NO CARRY TO WORRY ABOUT YET

NO CARRY

QET PICTURE BYTE

SAVE FOR LATER USE

CONVERT TOP 6 BITS TO LOWER 6 BITS

INDEX INTO WRITE TABLE
GET DISK BYTE

SAVE T

NEXT BUFFER LOCATION
BUW HIGH BYTE ?

NEXT
suw

PICTURE BYTE
HIGH BYTE 1

DONE
YES
GET PICTURE BYTE

SAVE FOR LATER USE

GET BOTTON TWO BITS OUT

MERGE INTO FOUR BITS FROM THIS BYTE

HALF OF PICTURE YET 7

SHIFT TO BOTYOM 6 BITS
INDEX INTO WRITE TABLE

SAVE IN BUFFER
NEXT BUFFER LOCATION

BUMP HIGH BYTE 7
NEXT PICTURE BYTE

GEY NEXT PICTURE BYTE

SAVE FOR SHIFTING

GEY BACK LAST PICTURE BYTE

GET LONER 4 BITS

PLUS UPPER TWO OF ADJACENT BYTE

INDEX INTO WRITE DATA TABLE
GET DISK DATA BYTE

SAVE IN BUFFER

NEXT BUFFER LOCATION

BUNP HICH BYTE ?

GET PICTURE BYTE AGAIN
LOMER 6 BITS ONLY

INDEX INTO WRITE DATA TABLE
GET DISK DATA BYTE

PUT IN BUFFER

NEXT BUFFER LOCATION

BUNFP HIgH BYTE ?

NEXT PICTURE BYTE
BUNP MIGM BYTE ?

JUST BOTTOM TWO

USE AS INDEX

GET DISK BYTE

SAVE IN SUFFER

NEXT BUFFER LOCATION

LAST BYTES ARE DISK TRAILER BYTES
SAVE 1T

NO CARRY TO MORRY ABOUT

LAST TRAILER BYTE

LAST BYTE [S ZERO

MAKE SURE THAT READ DOESN'T OVERLAP ON TWO PAGES

8s

TXA
ORA
STA
STA
STA
STA
STA

LDA
BPrL
cwP
BNE
NOP
LDA
BPL

2g3e82%

$T7EQQ- .

¥sEC
0841
L0641
0741
0841
09+1
DRQ6L
01
#3505
o1

ORO6L. X

03
#SAR
02

>

DRQ6L . X
as
#SAD
ez

GET SLOT IN ACC
NAKE Q6L ADORESSES CORRECT

READ SHIFT REGISTER
WALT FOR FULL BYTE
FIND 305 7

NO

DELAY

AEAD SMIFT REGISTER
WALT FOR FULL BYTE
FIND SAA 7

NO

RELAY

READ SHIFT REGISTER
WALT FOR FULL BYTE
FIND SAD 7

NO

O S e AL 7900- 58 558 RTS

G408 - START READING 4096 BEYTES Fh4D -
TEIF- 40 B Ga1m LDY Fsgd INITLALRZE ¥ TEIR smencamscans
BAM wrv-crmcrn TAEEssssadess S sdEEa TR0 -
FEJL. AE BC C@ Aa)2 0% LON sl BEAD DItH BYTE 1 a 7981 . 4 TEM LuARE P SAVE DESIFED THACK
TEI4- 1@ 'm Fodl b [L WL WAIT FDR B mITS 253 THEZ- P& @% Tapa ASL CLRTEIL THD PHAREER MR TRADH
FAle- B0 @8 7O G450 LA READSL X CONVERT 1T 4 THEA- AD B0 Tl LOY AS@d SET INDEX TO ZERG
TEIS- 4 1& HALD CPY STOP DonE ¥ 3 7905 . B4 1B Teia STY STEFS SET STERS 20 FAR TS ZLRD
THIE- DR a8 &4TR ENE @&) i3 TReR- 3B Tiia SEE ENTER WiTH DESTRED TRACK.2 IM ACC
TRID- AG 1D L4ED LOE PRGEs] CHELCE WlGw WYTL 3 7989 ES 8% Fidd Sl CURTEL HOW FAR DO NE WONE T
TRYF- Ed 17 &40Q CPX STOP:] DOHE # | 7988 &% @R THY0 STk HOOTA ™ = = OUT =
TRal- FB O3S 4RO BEQ @9 YES - ONE NORE BYTE 2/3 7o8D- 19 @7 THLD BPL .1 KEEP IT POSITIVE
GE1A . faamm e acsssssssssans | 7o8F. 85 @B TérD ETh WOOIA SET 17 OUTEARDS
TEA3- AF BC GO 6520 @6 LDX DRQGL WEAD DISK AYTE 2 'l 7911 18 7480 £Le
TRaE- 10 Fi wfida EFL .26 WAIT FOR 0 BITS i3 | ™o02- 45 PP ThOG EpR SFF INYERT 1T
THAE. 1D BB PC GBAD Ofk READIR.X ADD INTO FIRST DISK BYTE 4 7014, &0 @) T ADC BEY ANE ABD GNE
TRa@- 9] @F ansa EIA [PAGE) ¥ SAVE [N HIRES ARTA i 7916 BS @0 I ETA HOWDVE SAWE [T
TRAD- B 80 ML GBEQ LI READEL X GET MEET PART 4 LB~ 66 @S 1730 ROR CURTEK OIVIDE BY TwW
ASE- Ch L INY HEXT HIRES BYTE 2 F9L4. &6 B5 EFET] ROR CURTRE CHEGCK IF TRAGK apo *
TBSE- DR @2 ahaR BSE .27 NEXT 258 BYTES * 23 FETTR L T Lk WODTR GHECK HEAD DIRECTION TO0
TA53- E& LA LT IhC PAGE=1 BUMP HIGH BYTF OF POINTER & SHLE . 48 24 FEET BCC 3 IT'S EWEM
BEEP srrrrrrrrrssic e cscsesssmssnaa 7034~ 18 B4 T] BAL .3 00D - AND IMMARD (¥e=2)
7A%3: AE HC CO BGLG @7 LOX DRGEL READ DISK BYTE 4 7972- 38 94 1778 T OD0 - AMD QUTMARD (Ya@)
7a58- L@ F@ L1 BPL a7 HWAIT FOR & BITS 2:3 7934~ 10 82 1TeR 3 L .4 EVEN - AMD IMWARD [(Te@)
TRLA. 1D B T §638 04 EEADAR X 400 INTO SECOMD DISE B¥TE & 7925 AQ B2 778 3 LOY TEEZ (EVWENM AND OUIT) ONf (000 AND [N
7850 %) @ i STA (FREE) .Y SAVE [h HIR(E AREAL & TIE- A% D e 4 LOA HOMONT HOW FAR faw T
TER. BD @ TF S LD& READZL X GET NEXT PAST 4 7M. FO 43 i L R | B HE DO
TEEI- CH GELD Iy MEXT HIFES EYTL 2 TOIC . AN TR TAX MW E IS CLEAR
TREN- DR @7 [] BnE @8 APTD PR BYTES P 23 TN - Ed I8 (RT CFE STEPS W FRR HAYE W GONE
TRES- T4 10 131 1 I FAODE:) ELMPF HIGH BYTE OF POINTER & FEIF - 90 @2 Thdd BC 5 HOMOVE « STEFS
e Bt L ST T 7931 AG 18 TASe LOKE STEPS GET THE LiWE%T
TB67- AE BC CO 4700 .08 LOX DEQEL MEAD DISK BYTE 4 7931- Ed aB ThEA % =T KEEF 1T UMDER 7
FAgA. 18 FB G218 BFL €8 WALT FOR B BITS E°3 7535 . S@ @3 7870 BOC .6 BLREADY LESS THAW F
FAGC- 1D @8 FA 4720 ORA READER,E ADD IWNTG THIED BYTE 4 THAT- A2 @7 FEBE LK aF WEME BT 7
FAGE. 91 oF i71e STA [FROGE),Y SAVE IN WIRES AREA & 7935. BD CA4 7O TROA & LG DLYTEL,X GET THE DELAY
7ATL- CA fran Iy 256 BYTES DONE T 2 FUIC. B BC To00 &TA HDOLY SAVE THE DELAY
TAT2- DB MO G7ER BNE .05 EEER G0 NG 23 TUIE- BY GO 7% THE LA PHSTEL ¥ FIND PHASE TO TURN DN
FATA: E& k@ [1] INC PAGE 4] HUNE POINTER HIGEH BYTE 5 Toai- d@n 13 LT oA SLOT aR IM THE SLOT
TATE. [arre BNE @R HRANGH &L WAYS 3 7043 - ki o TAX USF A% IWOEK
BPB0 a-vr-o oo cisaciaccccsra s 7Ud4. BD BO OO 7040 LDA PHASE X TURS IT ON
THTH- AE BC CO G790 .00 LEE DHR{HGL HEAD LAST GISKE BYTE] TRAT. A6 13 TN Lo FLB OELAY FON HODLY = 100 MICHOSECOMDS
TATH- 10 F@ fROD BFL B9 WAIT FOR B BITS 21 7049- E9 B 60 B 4BC Wi OECHEMENT
TATD- 10 @0 7& AHID ORA READER . X DON'T SHIET LAST F MLTS 4 7448 D FE TTe NE B
THED- 9] B L STA (PAGE}.¥ SAVE 1T 3 TOAD- C6 B Flag DEC HOOLY OECRTMENT OELAY
e el T E el T b TAAF- DB FE TT00 iNgE T KEEF GOING
ramz. Ak 13 LALD LOX SLOT GET SLOT 79%1. Ok e EX TLAM IT BACK OFF
raz4- BD AC €O &2%D .10 LO& DAL X READ CHECH BYTE 7957- BO B0 CO BOID Link PHASE & OFF THIS TINE
TEET- 10 FE &840 BFL .18 GOT EIGHT BITS T 7955. A% 9@ BO2 LOW HDDIR MHAT DIRECTION *
TAA9- C9 OO iara CHF BIDE IS IT 3D ¥ TH5T- 10 09 (YT T T OUTRARDS IF MEGATIWE
TAEE. 00 14 4AdD BYE 13 MO 7e58. CB B4 T MERT FHASE
TEED- B0 B0 C@ 4B90 .11 L DRQEL.X READ WEXT CHIECK BYTE THSA- ©O B4 803D ery id OUT OF TABLE 7
TARD- 10 FR 498D BFL 11 EIGHT BiTs * TREC. DD B% BOWD EME 18 BT YET
TERZ. C9 AN “wie ClP azas IS IT B4 1 THSE- AD @80 woTa LY @ RESTART AT IE=D
TRSA. D @B 50 ENE .11 w0 THER. FR @% LT T BEQ 1@ SEIF OVER
TasG- B0 BC CO ¢8O 132 L DRQEL. X READ LAST CHIGCHK BYTE M- kR [T T DEY MEET FPHASE
TA93. 18 FA @90 BPFL .12 ENHT BITS 7 963 10 @3 Biow EPFL 1@ ETILL TH TRBLE
7a%0- (DR 40%0 P wSEH I3 17 e 1 7965- AR 83 BL1D LDY =% START AT END
FESD- DO 82 L EME .13 Fi T967- CE 0D g130 10 DEC HOMOVE MEXT WOVEMEMWT
TROUF- 18 BAFD CLE SHOW COOD LAD 7060- E6 18 CIEL INE STEPS DUMP THE STEP COUNT
EL LR huEe RTS J98E- &C 7B 70 ElAD Jue i KEEP GOING
e - 796E- &R BIS0 11 PLA GET DESIRED TRACK
TaaR . JOEF - 48 L HET) LSR DIVIDE BY TWO FOR ACTUAL TRACH
fmal- 38 Taig 13 SEC SHOW ELIPPED DISK 97R- BS 0% kive BTh CURTRH FASS [T OACK
THAL- B4 FUTi K15 7972- AB L3 BlEe LOX &LOT GET SLOT DACK
ramm . 074~ 40 (TLT] TS
E T A2 -
rasa - MARE SURE THAT BDADOR T] R L E T ———
ToEd . DOESH T OVERLAF PAGE BOUNGART BIFH -
1or - aFs- Az 19 238 AwapP LOX TREGMUNM GET MUNEER TD 5S&ap
78A3- A3 TE FORE ROADDE LOY a%2a THRY A& FEW T]IWL§ 7977- B M 248 .1 LOA REGC X GET XERG PAGE BEG
TRAY-. B 09 s STV ADOTRY ARGUT §3T4 TIMES (FULL B W00 LT I0M] TATE. BC D4 TH 13948 LOY WEGSAW.X GET SANE AREA
TRAT- BN L) TARC- 0 04 M ADG STA REGSAV.X SAVE JERD PAGE BEG
FEAR. D4 Qi Tine BRME 2 BoR=0ow 1 FIrE. 94 (Fed] STY REG.X MOVE REC SAWE TO JOHO PAGE
TRAL- CE DD T DEC ADDTRY DEC HICH BYTE 7381- CA st X NEXT RIG
ThaC- FO O8I T BEQ 1L GIVE AN EERDE TR~ 10 F3 Bi%d T | WIRE T
TEAE- B0 BC C@ Tlég 2 LOA DEGEL. X SEAD DISH BYTE 7984. &0 BB RTS
Temi- 1@ FE Tk [WAIT FOR & BITS | e -
TEAZ- C9 b e 3 Ve F5pn IS IT 40§ ° | B S s e e e
TENS. DR FER 7170 BNE) WO - WEDP LOOKIWG 2130 .
Taar. EA T1sD HOF WALT TOES- A6 13 B140 [RROR LOE 10T GET SLOT
THBE- BD BC CA 7190 4 LOA DRQEL. K READ NEET DISK BYTL TORT. BD BB OO #i%@ LIk DREOFF X TURN OFF THE DHRIVE
THEB- 10 Fm 73480 BPL 4 WALT Foi CIGHT DITSH TOEA- 24 DA BAbE BIT OWERR |5 ON EEROR GOTO ACTIVE 7
EED- C9 Ak aie CNF FiAk 15 17 %Aa ? TORC- 10 @8 B170 mPL | MO - PRINT MESSALE
THEF- 0 F2 raxe BnNE 3 HO - MIGHT BE 10% THEE- AZ BE LRET LOX FEOA SHDW AN 1.0 ERHOR
THCL- AD B3 T2AD LDY Fi83 GET READY FOR IHOEETHG TRR0- 4C E9 FI 8190 JNF ERRIND USE APPLESOFT ERAGOR HAMNDLER
THCI- B0 OC €@ 740 & LOA DROSL . X READ LAST ADDROSS HEADER 8yT0 7993- 0 DO FE RAGR .1 J&R BEEP BEEP THE SPEAHER
THCE- 10 FB 7230 BFL 5 BAIT FOR ELGHT BITS 7996- AZ M H4ID LDX Fi08 PRIMT EWTIHE WESSAGE
FRCE- C9 94 Faio CHP ¥395 15 IT 384 7 TO9R- MO 03 P9 B4 .2 LOW MESS X GET CHARACTER
THCA- OO ET 1270 BNE .3 MO - MIGHT BE 104 7958- FO BE naie BEQ 3 DHOE
TACC- &9 pa raio LO& §303 RESET CHECKSLIM THM0- 29 IO FO R4AD JER COLIT SEMD QT
TECE- 8% 04 Faep 6 STA CHECH T9A0- EN [T IMx MEXT CHARACTER
TAD@- BD BC C@ FIRD .7 LDA PEQAL . X FREAD DISE BYTL 7981 DA FS& EadD BNE .32 BRAMCH Al SRYS
rab3- 10 r@ THD BFL .7 NAIT FOR EIGWT BITS THAR- 30 F3 PR BATE .} JER Gwad RESTORE THE OATGIMAL FERG PAsE
TEDS- A 1310 RO SMIFT IT THSS- AD 99 DF B430 LOw GLOBAL GET PFRODOS GLOBAL START
TEDE. BS € 1110 STA WERGE SAVE TEMPORAEILY 79A9- C9 AC BIND CHP 1e4P IT'S & Jue [F PROGOS
TRDE. BO AC €@ TH4D A LDA DEMQEL T READ DISK BYTE TeRE. 1D @3 580 [T FES - IT°5 PROOSE
TEDE. 10 FR EALT] [T | HAIT PO EICHT BITS 7RAD. &L 0P @) B% 18 I EARMEI 0 D0 DO DOF 3) RARIC NARWSTLNT
TROO- T8 0 Tiia AMD BERGE MEWCE 17T TORO- &0 D DI I 4 S EARMPR GO DO PRODOS BASIC MARMATANT
TADE. 9% Bb B4 TRTD STA DISECK ¥ DISNCK = CHECHEUM T
TRET- 4% #4 TIED PO CHECH DISECKe] = S{CTON 7963 - &0 B5E0 MESS ek, EEED T e
FREL. BB ThED DEY DISKCKE+ T = TRACK TO@d- ©4 O D3
THRES. 1D FT Tadp BPFL & DISECK+3 = WOLUMIE 79B7- CB AD C%
THET. AR Tal@ TAY CHECK CHECKSUM TOBA. D2 D3 CF
TRLR- DD 18 TdrD BNE 11 SET CAMEY F08 EREON TORB- D2 EBED A% -*DISH ERROA
THEA- BD BC CA Taze 9 LA DEL.X READ DISE BYTE JOBE. 20 0@ ERGD 04 ¥SED SE0B HETLEN , END
TRED- IR FD Fadi Bl 5 WATT Fiie & WitTs BEFE »
THEF- CO DE rasig CHP wiliF WalLip TRaiLER 7 79CH- B3 05 07
THFL- B 80 TagR BHE 11 GIVE AN ERMOR 7aC3- Bl BHED PHETBL DA v3 .85, P7 Vi PHASE-0M ADDHESSES
THF1- EA TaT) wapP MAIT A LITTLE FRCA- TH BC 68
7AF4- B0 BC CA TaEd 10 LOA DADEL,X READ DISK BYTE IRCT B4 BA RO
TAF?- |0 FW FANE OFL 18 MAIT Fok EICNT BITS TICA- BA B B9 DLYTHL D& 370, 436, #5608 yEod, r560. 4800, vASA 35
THFS. CO Ak Famd CHF 5isa WALID TRAILER 7 BERd «
JAFH- 040 82 TaL0 BRE 11 NG - GIVE EXROS FICC- B 48 2@
7EFD- 18 Faza cLe SHOW MO ERAGES FOCE. 10 08 g
IRFE- 44 TH10 RTS

03~ 3 W BELE WARK i ARDFRIDERRARTIR] EIT WASK FOR FRODOS
TAFF- 18 TSee 11 SEC E L 8434 .

Listing 2 for for Ultra Fast Pix
ULTRA.FAST (continued)

8630 . ZERO PAGE SWAP AREA
8640 +
7904 :: REGSAV .BS REGNUM RESERVE JUST ENOUGH ROOM
79ED- 8670 .BS $7A00-. MOVE TO NEAREST PAGE BEGINNING IA93. 00 00 00
8680 . 7A96- 08 01 9928 HS S000000080000001 90-97
TAD0. 96 97 9A JASE. 00 00 02
7A03- 98 90 9 TA98- 03 00 04
JAO6- SF A6 8690 WRTABL .HS 96979A9BIDIEIFAE JASE- 05 06 5038 HS 0P00020380040506 98-9F
7AQ8. A7 AB AC 7AAB- 00 00 00
7A08- AD AE AF TAA3- 00 00 00
JAOE- B2 B3 8700 'HS A7ABACADAEAFB2B3 JAAG- ©7 08 9040 HS 00000ROCAOCEA708 AG-A7
7A10- B4 BS B6 TAAB- 00 00 00
7A13. B7 B9 BA 7AAB- 09 0A 08
7A16- BB BC 8710 HE B405668709BABBBC TAAE- &C 00 9089 HS 0P000RASEAREACED AB.-AF
7A18- BD BE BF 7ABD- 08 08 0E
7A18- CB CD ¢ FAB3- OF 10 11
7A1E- CF D3 8728 WS BDBEBFCBCDCECFD3 7AB6- 12 13 906R HS ODOOOEAF101131213 B0-87
7420- 06 D7 09 7ABB- 8@ 14 15
7A23. DA D8 DC JABB. 16 17 18
7A26- DD DE 8730 HS DEDTDOADEDCDODE JABE- 19 1A s07e -HS 001415161718191A BB8-BF
7A28. OF ES E6 7AC- 00 08 08
7A2B- E7 E9 FA 7AC3- 00 00 00
JA2E- EB EC 8740 HS DFESEGE7EIEAESEC JACG- 0 08 9089 HS P000R00RAGRA0R CO-C7
7A30- ED EE EF 7ACB- 00 00 00
TA33- F2 F3 F4 TACB- 18 08 IC
TA36- F5 F6 8750 WS EDEEEFF2F3FAF5F6 JACE- 1D LE 9090 HS 300000 18091CIDIE CB-CF
TAIS- F7 F9 FA JADD. 02 00 00
7A38. FB FC FO 7AD3- IF 00 00
INJE- FE FF 8760 HS FIFOFAFBFCFDFEFF JADG- 20 21 9180 HS 0000001FRI002021 DI-O7
8770 . TADS- 00 22 23
8780 . 7ADB- 24 25 26
8790 . READ TABLE DEFINITION JADE- 27 28 9119 WS 9022232425262728 0B-DF
8BO0 . TAED- 00 00 ™0
8810 - SIX DATA BITS ARE 1-6 JAE3- 00 04 29
8820 . JAEG- 24 28 9120 HS 0082000000292A28 ER-E7
8830 . READ6L = 65432108 TAES- 00 2¢ 20
8840 . READ2R = 00000065 TAEB- 26 2F 30
88s@ . READAL = 43210000 JAEE- 31 32 9130 HS 002C20262F303132 EG-EF
8860 . READAR = 00006543 TAFO- 00 08 33
8870 - READ2L = 21000009 TAF3. 34 35 36
8888 . READ6R = @9654321 TAF6- 37 38 9140 MS 8000333435363738 FO-F7
8898 . TAFE. 00 39 3A
8500 - SO FOUR BYTES READ ARE TAFB- 3B 3C 30
:9;: . SPLIT INTO THREE BYTES AS TAFE. 3E 3F :1:: HS 90393AIBICIOIEIF FB-FF
920 - 160 »
8938 - BYTE 1 = DI(READ6L)+D2 (READZR) 7600- 9170 READSR BS 5108
8940 - BYTE 2 = D2(READAL)+D3 (READ4R) 7C00- 9180 READZR BS $100
8980 . BYTE 3 « D3(READ2L)+D4 (READER) 7000- 9190 READGL .BS 5100
8968 . 7EQ0- 9200 READAL BS 3100
8970 READ6R EQ WRTABL PLACE WRTABL IN SPARSE READGR TFO0- 9210 READ2L .BS $100
8388 BS $7AB0-+« MOVE UP TO LAST 80 BYTES IN PAGE 8080 9220 BUFMEM BS 5469 WRITE PRENIBOLE BUFFER
8999 . 9550- 9230 BUFEND EQ
00 90 00 L 2 I e et
- 99 90 0 9250 .
00 00 00e HS 00000E0PER000000 80-87 2050- 9260 22S1ZE EQ + SETUP PROGRAM SIZE
00 00 00 END OF LISTING 2
00 00 90
00 00 soue .HS 0200000000000000 85 8F
00 00 00

g

