THE APPLE SCREEN — II

Building A Subroutine
Library

by Don Ravey
127 Chukker Court
San Mateo, CA 94403

As promised in Part |, we will now examine
some specific subroutinesthat you might like
to have as Text Files, ready tobe EXEC'd into
your Applesoft programs. We hope that you
have established a CAPT SUBR program, as
suggested in Part |, to make it easy to create
your Text Files. In case you haven't, you may
wishto getthe last issue of NIBBLE and care-
fully read Part | of this series.

(Y/N)?

The firstsubroutine to be described is one |
call (Y/N)?. It prints a string, ST$ (ALL my
subroutineinput strings are named ST$ —not
very imaginative perhaps, but consistent), fol-
lowed by (Y/N)?. It then waits for a keystroke
answer. If the Y key is pressed, it sets the
variable YES to TRUE (1). Any other key will
set YES to FALSE (0). Your next program
statement can then be something like IF YES
THEN..., making your program very easy to
read! | use line number 102 for this simple
routine:

102 PRINT STS$; “(Y/N)?”;: GET A$:
PRINT AS$: YES = A$ =“Y": RETURN

That's not a misprint just before the
“Return” — that's a boolean expression!
Would it help if | wrote it: YES = (A ="Y")?
The expression inside the parentheses is
either TRUE (1) or FALSE (0); therefore, the
variable YES is assigned a value of 1 or0.

Let's look at how you might use thisin an
Applesoft program:

10 REM »« SAMPLE PROGRAM +»
20 TEXT : HOME : REM ALWAYS A
GOOD WAY TO START A PROGRAM
30 D$ = CHR$(4)
99 GOTO 199 : REM SKIP OVER
SUBROUTINES
102 PRINT STS; “ (Y/N)?";: GET A$:
PRINT AS: YES = AS$ = “Y": RETURN
199 REM BEGIN MAIN PROGRAM:
200 ST$ = “DO YOU LIKE THIS
SUBROUTINE": VTAB 10: GOSUB 102
210 IF YES THEN 250
220 PRINT “TOO BAD!"
230 GOTO 300
250 PRINT “GLAD YOU LIKED IT.”
300 REM CONTINUE

Touse this subroutine, note that you assign
the desired string to ST$ and determine your
screen position before calling the subroutine
(see line 200).

SLOWPRINT

On occasion, | like to have one or more
lines “spit out” the characters, one after
another, instead of the whole line or para-
graph going "splat” on the screen at once.

Theroutine is very simple. If you set SPEED
=2000rs0, |ustbefore calling the subroutine,
the action will be slower (don't forget to later
reset SPEED = 255!). | put the “plain” routine
on line number 104 and a “sound effects"
version on line 106. The expression: Z = PEEK
(-16336) + PEEK (-16336) is just a way of
referencing the loudspeaker output location
twice — the “Z" value isn't used for any pur-
pose. We use two references because each
reference to that location “toggles” (alter-
nates) the state of the speaker, and the “click”
that we want to produce occurs on only one
of these transitions.

Toslowdowntheaction alittle, I've added a
“do nothing” loop inside the “PRINT” loop.

104 FOR X = 1 TO LEN (ST$): PRINT MID$
(ST$, X, 1);: FORY = 1 TO 20: NEXT:
NEXT: PRINT: RETURN

105 FOR X = 1 TO LEN (ST$): PRINT MID$
(STS, X, 1);: Z = PEEK (-16336) + PEEK
(-16336): FOR Y = 1 TO 20: NEXT:
NEXT: PRINT: RETURN

SLOWERASE

Now that we have “slow-printed” a line to
the screen, one letter at a time (with the line
105 “sound effects” version, it sounds quite
like a typewriter), what about erasing it a let-
ter at atime, from the end back to the begin-
ning of the line?

It turns out that Applesoft makes this very
easy todo, and the visual effect is quite attrac-
tive. The key to doing this is the Applesoft
subroutine that starts at memory address
-868 (that's the same as 65,536 - 868 = 64,668,
but isn't -868 easier to remember?!). The
CALL -868 routine is the same “clear to end-
of-line" function that you get in immediate
mode by pressing control-E (holding down
"CTRL" while you press “E").

So all we have to do is set up a loop that
progressively HTABs lu lower and lower
values (STEP -1), starting with the end of the
string, and clears everything past that posi-
tiononthe line. Oh, yes: we should returnthe
cursor to the same line as it was when we
started; itis a good programming practice to
arrange for each subroutine to leave things as
they were prior to calling the subroutine. This
practice will pay off in easier debugging of
complicated programs; it's a good idea to
establish good habits early!

Memory address 37 (decimal) is where the
Apple stores the current cursor vertical posi-
tion (often referred to as CV). Due to the
sequencing of the machine language I/0 rou-
tines, the direct use of the cursor position
value can become a little tricky. | found, after
a little experimenting, that in this case it's
necessary to VTAB to the CV value before
starting the "erase"” loop, thenreset CVto one
less than its value, at the end of the loop, in
order to tidy everything up.

For a “sound" version (line 107), just add
the references to the speakertoggle address
(-16336) in the loop, as in the "Slowprint”
routine.

106 VTAB (PEEK (37)): FOR X = LEN (ST$)
TO 1 STEP -1: HTAB X: CALL -868:
FOR Y =1 TO 40: NEXT: NEXT:

POKE 37, PEEK (37) - 1: RETURN

107 VTAB (PEEK (37)): FOR X = LEN (ST$)
TO 1 STEP - 1: HTAB X: CALL -868:
FOR Y =1 TO 40: NEXT: Z = PEEK
(-16336) + PEEK (-16336): NEXT:
POKE 37, PEEK (37) - 1: RETURN

BACKERASE

But, what if we wanttoerase aline from left
to right? It will take a different technique,
since CALL -868 clears to the end of the line.
Aha! Where IS the end of the line? It's wher-
ever we say it is, in memory address 33
(decimal)! The strategy for thisone isto gen-
erate a loop that repeatedly increases the
defined text window width, then clears the
line, as defined. By this time, you will no
doubtsee how to construct the loops, and the
“sound” version:

108 FOR X = 2 TO 40: POKE 33, X:
CALL -868: FORY =1 TO 30: NEXT:
NEXT: POKE 37, PEEK (37) - 1:
RETURN

FOR X = 2TO 40: POKE 33, X:
CALL -868: FORY =1 TO 30: NEXT:
Z = PEEK (-16336) + PEEK (-16336):
NEXT: POKE 37, PEEK (37) - 1:
RETURN

CENTERPRINT

This one is as straightfoward as it is useful.
It simply prints enough spaces before the
string to center the string on the screen. How
many spaces? Half the difference between
the string length and 40 (the number of
columns on the screen).

109

110 ST% = (40 - LEN (ST$)) / 2:
PRINT SPC (ST%); ST$: RETURN

THE SLIDER

“"CENTERPRINT" makes neat displays, but
lacks action, or “Pizzazz"! Here's a variation
that “slides™ your ST$ string onto the screen
from the right edge, leaving it centered. IU's

very eye-catching. For this we perform a loop
that HTABs to lower and lower values, and
prints as much of the string as will fit on the
screen each time. If you're not comfortable
with the LEFT$ Applesoft function, now is an
excellent time to get acquainted with it, in
your Applesoft Reference Manual — you'll
find the Applesoft string handling functions
extremely useful.

Each trip through the loop prints over what
was printed by the previous loop. Note that
each PRINT adds aspace (* ”)totheend of
the string, to erase the last character of the
previous PRINT, after the whole string fits on
the screen. Another thing to watch for: don’t
PRINT too much of the string each time, or it
will spill over to the next line. Again | found it
necessary toexperiment alittle with the verti-
cal tabbing, so that all the action occurs on
the right line.

112 L = PEEK (37): FOR X =1TO 19 + LEN
(ST$)/2: VTAB L + 1: HTAB 40 - X:
PRINT LEFTS (STS, X); * ";: NEXT:
PRINT: RETURN

BILLBOARD

If you have a |-0-n-g message instead of a
few words, here's a "billboard” or “Times
Square” routine that will handle over four
lines of text — over 170 characters. By adding
40 spacesat the beginning and end of the ST$
string, thesmooth entry and exit of your mes-
sage is made MUCH simpler. we simply
PRINT a 40-character MID$ string, advancing
the starting point each time through. If you
REALLY MUST display a longer message,
you could rewrite the routine to do special
things at the beginning and end, and utilize
the maximum string length of 255 characters
— but why make things difficult?

113 L = PEEK (37): SU$ =
7 (40 spaces) 7
ST$ - SU$ + ST$ + SU$: FORX =1 TO
LEN (ST$) - 40: VTAB L: PRINT MID$
(ST$, X, 40): NEXT: PRINT: RETURN

SCREEN WIPES

We saw how the “erase” lines from one or
the other end, by using the “clear to end-of-
line” from within a loop. Now, let's apply sim-
ilartechniques to “erase" the wholescreenin
various directions. You may have seen these
routines in an earlier NIBBLE issue, identified
as "Humble" (Be It Ever So Humble, "HOME"
Is Noplace!).

For a left-to-right “Wipe", just keep defin-
ing the left edge of the text window further
and further left, starting near the right edge
—but you must also define the line width so
that it won't exceed 40 — then “"HOME™":

120 FORX =38 TO 0 STEP -1: POKE 32, X:
POKE 33, 40 - X: HOME: NEXT:
RETURN

For a right-to-left “Wipe", it's even simpler
— define the text window longer and longer,
from the left edge, and do your “HOME":

121 FORX =2 TO 40: POKE 33, X: HOME:
NEXT: RETURN

A top-to-bottom "Wipe"? What could be

easier! Set the bottom of the text window pro-
gressively lower:

122 FOR X = 1 TO 24: POKE 35, X: HOME:
NEXT: RETURN

| probably don’teven have to tellyou how to
do a bottom-to-top:

123 FOR X =23 TO 0 STEP -1: POKE 34, X:
HOME: NEXT: RETURN

Next month, we will provide some very use-
ful formatting subroutines, along with more
complicated “novelty’” routines.



