DISASSEMBLY LINES

PRODOS
QUIT CODE

Sandy has dissected the ProDOS QUIT code
and found enough room to install
his own, much improved QUIT code
— a program selector.

n the past year [have received many letters about the ProDOS

QUIT code, which transfers you from one system program to

another. Although a few readers wish simply to understand
the code more clearly, the vast majority plead for a less cumber-
some selector/dispatcher convention. Well, my friends, you've come
to the right place. After reviewing and dissecting the QUIT code,
I shall provide you with a slick means of gliding smoothly and
rapidly between applications. If you have never owned a program
selector, you're in for a treat.

MLI QUIT CALL

When the PRODOS file is loaded and relocated, the QUIT code
ends up residing at $D100-SD3FF in the second 4K language card
(LC) bank. The MLI QUIT vector is located at SBF03 in the Sys-
tem Global Page. An MLI call to QUIT can be made by issuing
the BYE command from Applesoft or by the following assembly
language sequence:

JSRMLI ;call MLI at $BF00
DFB $65 ;QUIT cal | number
DA QUITPARM ;pointer to QUIT parameter list

QUITPARMDFB 4 .4 parameters in list
DFB 0,0,0,0 ;all parameters equal zero

The classic QUIT call invokes the 40-column screen, which de-
mands that you type the prefix and pathname of the next applica-
tion. If you cannot remember the exact nomenclature, the system
must be rebooted. Like you, I too have come to hate this selection
process.

An enhanced QUIT call passes control directly to a designated
system program. This call can be made on the IIGS only when the
Apple [IGS system disk has been booted. The MLI call is identi-
cal, but the parameter list contains an SEE (E for enhanced) QUIT

type code and a pointer to a pathname string which follows the
ProDOS convention of preceding the positive ASCII characters with
a length byte. An example of this enhanced parameter list is:

QUITPARM DFB 4 ;4 parameters in |ist

DFB $EE ;QUIT type

DA PATHNAME ;pointer to next application

DFB 0,0 ;2 zero parameters

PATHNAME DFB 313 ;19 chars in pathname string
ASC ‘' /MYVOL/BASIC.SYSTEM' ;pathname string

Versions 1.2 and 1.3* of ProDOS 8 (see Disassembly Lines, Vol.
8/No. 7) support the enhanced QUIT call, but I stress again that
the call works only after a system disk boot has installed the ProDOS
16 QUIT code in the LC. It appears that this code remains opera-
tional even when a ProDOS 8 application has been selected from
the desktop launcher. Do not take this latter statement as gospel,
because I have spent little time trying to understand the ProDOS
16 environment; the new versions of ProDOS 8 are at the top of
my list right now.

Installation of Quit Code

Listing 1 contains scveral sections pertaining to the QUIT code.
In the loaded PRODOS file, the QUIT code proper is found at
$5900-$5BFF for versions 1.2, and 1.3, and at $5700-$59FF for
version 1.1.1. The PRODOS segment that relocates the QUIT code
is presented in lines 34-54. After setting the QUIT vector in the
System Global Page, and read/write (R/W)-enabling the second LC
bank, the X- and Y-Registers are pointed at a table of QUIT code
parameters, and the generic ProDOS relocation subroutine copies
the QUIT code from the loaded PRODOS file to bank two of the
LC. An identification byte is then set, LC bank one is re-enabled,

*Editor’s Noie: Since this article was completed, Apple has introduced Ver-
sion 1.4 of ProDOS 8. li's identical to version 1.3 in all the respects dis-
cussed here. Version 1.3 was found to crash on the unenhanced lle and
11 Plus and should no longer be used. All references 1o version 1.3 in this
article apply to version 1.4 as well.

errors are trapped, and, if all has gone well, execution of the
PRODOS file continues. Because it adds little to the current theme,
I have chosen not to disassemble the relocation subroutine.

Execution of MLI QUIT Call

When the MLI recognizes the QUIT call, it passes control to the
QUIT vector in the System Global Page (lines 55-60) which in turn
transfers flow back to the QUIT code handler within the MLI (lines
61-106). Here, the second LC bank is R/W-enabled, zero page loca-
tions 0-3 are saved on the stack, the three pages of QUIT code are
copied from $D100-$D3FF in the LC to $1000-$12FF, the first
LC bank is re-enabled. locations 0-3 are restored, the RESET vec-
tor is pointed at the relocated code, and control is passed to the
QUIT code proper, which has been transferred to low RAM. We
are now ready to dissect the working section of the QUIT code.
i.e.. the selector/dispatcher.

Execution of Quit Code

After enabling motherboard ROM and setting normal 40-column
text mode (lines 114-121). the selector resets the system bit map to
its virgin state. protecting pages 0-1, 4-7 and $BF, and freeing the
remainder of RAM (lines 125-134). The current prefix is displayed
by POKEing the result of the GET__PREFIX call directly into screen
memory (lines 138-157), and then the cursor is placed at the start
of the text (lines 158-160).

A new prefix is solicited by the input routine in lines 164-205.
Immediately pressing Return causes the current prefix to be selected.
Striking any other key clears the default prefix. Only valid path-
name characters are accepted. The Right-Arrow is disabled, and

The good part is that 8300 bytes of
space were used where only $200 byres
would have been adequate, thus
allowing vs an extra 8100 bytes.

the Left-Arrow and Delete keys produce a destructive backspace.
Escape clears the line. If more than 38 characters are entered, the
prefix line is cleared and entry must be repeated. Ugh! When a prefix
name is finally completed, lines 209-218 set the prefix. An error
restarts the selection process.

Next, an application name is requested (lines 222-228). Unbeliev-
ably. an entirely new input routine is used (lines 229-272, 334-343).
There is no point in describing the code, because it's nearly identi-
cal to the prior input sequence.

When the application name is tucked into the secondary text buffer
(TXBUF2), the dispatcher portion of the QUIT code takes over (lines
276-330). If the application is not a system (SYS) file, it’s rejected
and new input is solicited. On confirming a SYS file, all files are
closed. the target file is opened, and the file reference number is
placed in other pertinent parameter lists. Obtained by the
GET__EOF call. the file length is stuffed into the READ parameter
list. A check for a file larger than 64K (lines 310-313) is unneces-
sary, because the maximum number of bytes that can be read is
limited to the number of bytes between the start of the READ buffer
($2000) and the nearest protected page of memory (SBF00). Thus,
a file size of $9F00 bytes is maximum. If no error is reported, the
target SYS file is read into memory and closed. Line 330 turns over
control to the loaded application program.

Errors are handled by lines 356-377, where all execution mis-
cucs are divided into two categories: FILE/PATH NOT FOUND
and IO ERROR.

In reflecting upon the QUIT code, we discover that, as with all
creative efforts, pluses and minuses emerge. The bad part is that
$300 bytes of space were used where only $200 bytes would have
been adequate if the code were tighter. The good part is that $300
bytes of space were used where only $200 bytes would have been
adequate, thus allowing us an extra $100 bytes to write our own selec-
tor/dispatcher code. It seems to me that the author inadvertently did
us a favor, as you shall see in the next section.

A BETTER WAY

Two logical formats for a program selector come to mind: 1) A
selector that polls all on-line devices and allows you to home in on
a SYS program in one of the directories or subdirectories, and 2)
a sclector that contains a preset table of your most frequently used
applications. I shall present you with the latter type. If the first var-
iety appeals to you, get the July 1986 issue of Apple Assembly Line
and look at the excellent QUIT code written by Bob Sander-Cederiof.
Revisions to the S-C selector are found in the August, October and
December 1986 editions.

SELECTOR INSTALLATION
Listing 2 contains the code for our selector. To make the QUIT
code functional, follow these instructions:

1. Format a disk using FILER or a similar utility. Name the disk
/SELECTOR. Copy PRODOS and BASIC.SYSTEM onto the
disk, and note which version of ProDOS is being employed.
Alternatively, you may rename a current disk /SELECTOR,
provided that the disk contains the two files named above. Be
certain that PRODOS is unlocked.

. From Applesoft, type PREFIX/SELECTOR.

. Enter the code in Listing 2 manually (by entering the Monitor
with CALL —I151), or assemble it. Using an assembler enables
vou to customize the program more readily. For help with enter-
ing Nibble listings, see the Typing Tips section. Save the pro-
gram by typing:

BSAVE SELECTOR.CODE,A$1000,L$300

w o

. Type:
BLOAD PRODOS, TSYS,A$2000

5. If you are using version 1.2 or 1.3 of ProDOS, type:
BLOAD SELECTOR.CODE,A$5900

For version 111 of ProDOS, use $5700 for the A-parameter.

6. Type:
BSAVE PRODOS,TSYS, A$2000

7. Your ProDOS file now contains the new QUIT code. Reboot the
/SELECTOR disk or type -PRODOS followed by a Return to
install the selector.

You can automate steps 4-7 by using SELECTOR.INST (Listing
3). Type in the program and save it. Be sure you have it saved sc-
curely. since it is destroyed when the —PRODOS command is ex-
ccuted in line 160. Then run it with SELECTOR.CODE (Listing
2) on the same disk. You can replace the PRODOS file using FILER
or the system utilities on a number of disks, but note that only the
PRODOS file in the current directory is updated when the Control-A
or Control-D function is used.

Selector Function

By typing BYE from Applesoft or the monitor, you may access
the Selector. Do it. The display is in 80 columns. On my first try
with this program, the top line showed which keys could be used
to select arrows, dispatch (Return), add (Control-A) and delete
(Control-D) applications. Because of limited space, | decided to
reclaim these bytes for the application table, so you will have o
remember the commands. Only one name 1s visible: /SELECIOR/
BASIC.SYSTEM. The highlighted file is selected. Press Return and
see how rapidly you are dispatched to BASIC.SYSTEM.

Now. use the BYE command to reenter our selector. Type Control-
D and note that a single listed file cannot be deleted. Type Control-
A. observe the PATH request near the bottom of the screen, and
enter the full pathname of a frequently used application. Only SYS
files can be exccuted. For example, | would type /SELECTOR/
MERLIN.SYSTEM to execute the file. When the entry is completed
and the disk is whirring, PRODOS is being loaded, the table of SYS
files within PRODOS is being updated, and PRODOS is being writ-
ten back to disk. By sensing which version of PRODOS is active,
the selector correctly handles all versions of /fSELECTOR/ PRODOS.
When this process is completed, the application table contains two
files, the original one and the file you just added. By striking the
arrow keys, you may move from file to file.

It PRODOS is locked when the SYS wble is altered, a bell indicates
that PRODOS has not been updated. The application table within
the LC has been updated. however, so the revised table continues
to be available as long as the computer is not rebooted or PRODOS
1S not re-executed.

During entry of the application pathname, any printable character
is accepted. At the beginning of input, the Escape key returns you
to the menu; in the middle of the line, Escape restarts input. The
Delete and Left-Arrow keys produce a destructive backspace. Input
is rejected if the pathname exceeds 64 characters or if the SYS ta-
ble contains 206 characters. At this stage, no check is made for a
full pathname or a valid file name. A maximum of 21 application
names is permitted: thereafter, the Control-A function to add names
is disabled.

When a valid on-line filename is selected and executed, the ap-
plication is started up. If the above conditions do not prevail, a bell
sounds and the application menu reappears. If you have placed an
invalid filename within the table, reenter the selector, select the faulty
entry, and press Control-D to delete it.

The more disk space you've got, the morc valuable a program
selector becomes. My 1IGS system contains two UniDisk 3.5-inch
drives and one Disk II drive. My Apple Ile is configured with one
UniDisk 3.5, one Disk II. and one hard disk. With six and cight
application names, respectively, in my sclector tables, I now move
between applications with a grace and speed which I could no longer
do without.

SELECTOR CODE

The difficulty of fitting a sophisticated program into a $300 byte
space is evinced by my writing five versions of the utility. Natur-
ally. I'have provided you with my favorite version. In many instances,
I have sacrificed bells, whistles and text for a larger application table.

The selector code in Listing 2 begins with a CLD instruction (line
44). Apple Technical Note 14 insists that this convention is neces-
sary to distinguish customized selector/dispatcher code from the
native varicty. Although I know no program or portion of ProDOS
which checks for this initial byte, Apple has a way of surprising
us, and I recommend the one byte sacrifice for an assurance of safety.

After cnabling motherboard ROM and resctting the system bit
mup, file closure is ensured and 80-column mode is initialized (lines
45-59). The first menu (SYS table) line is selected by placing a zero
in SELECLIN (lines 60-61).

The table of SYS files extends from $1260-SI12FE, and the byte
at $I2FF contains the number of entrics, minus one, in the table
(lines 351-357). Individual entries are in negative ASCII format (i.e..
high bit set) with the final character in positive ASCII (i.c.. high
bit clear). Similar schemes are found in Applesoft and DOS 3.3 com-
mand tables. A zero marks the end of the table entrics, which may
hold a maximum of 190 characters ($1300-$1240-2 = $BE).

The menu is placed on the screen by lines 65-87. As stated above,
a low ASCII character flags the end of one entry, and a zero marks
the end of all entries. When printing is completed, IXSYSSEL in-
dexes the beginning of the selected line, and IXSYSEND points to
the end of the table.

Menu commands are obtained in lines 91-109. If an Up-Arrow

‘ [‘ ith six and eight application

ames, respectively, in my selector
tables, I now move between
applications with a grace and speed
which I could no longer do without.

or Left-Arrow is chosen, the selected line is decremented unless the
first line is already highlighted, in which case the last line (MAX-
LIN) is selected (lines 113-117). If a Down-Arrow or Right-Arrow
is struck, the above process is reversed (lines 121-127).

Lines 131-186 allow a new entry if no more than 20 table path-
names exist. The Add routine rejects pathnames longer than 64
characters and guards against the table length exceeding 190 charac-
ters. Verboten characters are not filtered out, but an invalid file cannot
be executed.

A file name may be deleted (lines 190-205) if more than one ta-
ble entry exists. After reducing the number of entries by one. the
index to the selected file name is placed in the X-Register, and the
index to the subsequent file name is stored in the Y-Register. Dele-
tion is completed by overwriting the selected entry with the remaining
entries and ensuring that a zero terminates the altered table.

When the SYS table is revised by adding or deleting a file name,
the new table must be written to the /SELECTOR/PRODOS file
and to the SYS table which lives in the LC. Lines 209-212 point
at the ProDOS filename, and line 213 calls OPENREAD (lines 281-
307) to open and read into memory the file whose name string is
located by PTR. In the course of placing the file name into TXBUF2,
the length of the prefix portion of the complete pathname is saved
in PFXLEN for use later. The file is opened by a standard MLI
call, and the returned reference number is put into other pertinent
parameter lists. As calculated earlier, the maximum number of bytes
that can be transferred to memory is $9F00. This number is stuffed
into the R/W parameter list, and the READ call is made. File reading
ends when the EOF marker is reached. No error is recorded unless
zero bytes have been transferred to memory, a virtual impossibility
within the context of this program. Control returns to line 214 where
the error status of the OPEN and READ calls is saved.

After write-enabling the second LC bank, the SYS table within
that bank and /SELECTOR/PRODOS are updated (lines 215-227).
In updating PRODOS, the System Global Page determines which
version of PRODOS has been booted and therefore loaded. KVER-
SION values of one, two and three designate versions 1.1.1, 1.2 and
1.3, respectively. The OPEN/READ status is then restored and er-
rors are reported (lines 228-229). After resetting the file MARK
to zero (lines 230-232), /SELECTOR/PRODOS is written back to
disk by placing the actual file size into the R/W parameter list and
executing the WRITE call (lines 233-240). A bell denotes a call
error (line 241), and line 242 restarts the sclection process.

Execution of a selected entry is made casy by the aforementioned
steps. Lines 246-253 point to, read and close the targeted file. Non-
SYS files are rejected by making the GET__FILE__INFO call and
testing the parameter list (lines 254-260). Setting the prefix to the
SYS file directory is a nice touch. PEXLEN replaces the length byte
of the complete pathname in TXBUF2, and SET__PREFIX does
the work (lines 263-267). The length of the complete system file
is saved (lines 261-262) and restored (lines 268-269) to accommo-
datc ApplcWorks, which demands that its file name resides in
TXBUF2. Finally, line 270 passes control to the file within the
READ buffer, and the new interpreter is off and running.

POSTSCRIPT

I'll wager a double-scoop mocha chip ice cream cone that the Nib-
bie selector will forever change your pattern of entering and exiting
application programs. Use it well.

In the next episode of Disassembly Lines, T shall return o the
LIGS. . .maybe! If 2 working disassembler appears by that time, we
may even tackle some 65816 code. Sce you then.

LISTING 1: QUIT CODE
NOTE: This code already exists in PRODOS. There is no

need to type it in.

2087
2089 :

208C
20BE
20c1

20ca.
20C7 :
20CA:
20CD

2002
2005
2008 :
2PDA ¢

8FO3:

05
24

25
83
83
74
75
EC

18
27

03

o0
0z

F&
01
o3

13

8F
co

2
22
28

D@
25

FC

co
co

CEONO DR W~

PP

- .
. QUIT CODE .

. PRODOS 8, Version 1.3 .

. Interproted by Sondy Mossberg .

- « Merlin-Pro

. Copyright (C) 1987 .

. by MicroSPARC. Inc. .

. Concord, MA 01742 .
D D P R PP Y

CH = $24 icursor column

cv - 325 (cursor row

TEWP = SDE .temporary storage

TXBUFZ = 280 iseconcary taxt buffer

RESET . $3F2 {RESET vector

SCNROWS = $600 ileft margin of Sth screen row
OPENBUF « 51800 cio buffer for OPEN call
READBUF = 52000 dota buffer for READ cal!
MLE = SBFOD ‘MLT call entry

BITNAP = $BF58 system bit map

INIT = SFB2F (initiatize text scroen

HOME = SFCHE .clear screon and home cursor
CLREOL = SFCOC :clear to end of line

ROKEY = SFDOC get input character

CROUT = SFDSE output CR

cour = SFDED output character

SETNORM = SFES4 (50t normal text mode

SETKBD = SFESD ;set input from keyboard
SETVID = SFE93 sot output to screen

BELL = SFF3A output bell character

.
« INSTALL QuIT

CODE IN LANGUAGE CARD:

CONTINUE

$2087

MULIQUIT
QUITe1
ESMLIQUIT
QUIT42
$Co83
scos3
52274
$2275
$28EC
WSEE
0008
$2518
CONT INVE
$2227

. loaded PRODOS ti1@ in low RAM

V2 = $2087

V111 =« 32099

set NMLI quit vector in
System Global Page

R/W enable 2nd 4K bank
of language card (LC)

:point to QUIT

. code table

.relocate QUIT code
place ID byte in

: 2nd LC bank

cset 1st LC bank

no error so continue

coff to error handler

(relocator continues here

» SYSTEN GLOBAL PAGE VECTOR:

szzz========

ORG

Quir

SBFO3
uLIQuUIT

ilow RAM (al| versions)

;execute quit code

EXECUTE INSTALLED OUIT CODE

MLIQUIT LDA
Loa

Loy
1 Loa
PHA
DEY
BFL
LDA
STA
LoA
STA
LDA
STA
STA
TaY
LoX
2 DEY
LoA
STA
TYA
BNE
INC
INC

$FCD5

$cos81
$Co83
ns03

$00.Y

21
U>SELECTOR
303

¥s01

01

500

500

$02

vso3i

(ses) .Y
(se2).Y

2
501
503

:lst 4K LC bank
V12 = SFCA9

V11,1 = SFCES

R‘W enable 2nd
4K LC bank

iindex 4 bytes

.save contents

. of $00-303

. on stack

iset pointers for
. moving QUIT code:
FROM ($02 pointer)
$D100-SD3FF in 2nd LC bank
TO (382 pointer)
$1000-S12FF in low RAM

i2ero Y
i3 pages to transfer

itransfer QUIT code

iset next page of
i code to move

£Do1

FDo2:
FDo4 -

FDa7

FOOS -

FDOA

FDoC:

FDoD
Fo10
FD13
FD15
FD18

FD1A:

FOID

FOLF -
| Fp22

1600
1003
006

1009:

igec
109F
1012
1815

1018:

101A
1g1c
101F
1020

1022:

1025
1026
1028
102A

1854
1867
1869

1084

33338883

8250820832

828233223538583¢%

2358

E8

©EQ

17
58

FA
58

mR378888

02

02
02

02
0%

fD

FO

FC

FC
1@

FF

163
164
165
166
167
168
169
170
171
172
173
174
1758
176
177
178
179
180
181
182
183
184
185
186
187
188
189
198
181
192
193
194
195
196
197
198
188
209
201
202
283

DEX
BNE
13 PLA
STA

2 :3 pages not yet moved
irestore original

09 X . contents of

$00-303 from stack
#3504
k]
scoss :R/W enable lst
scoas . 4K LC bank
#SELECTOR .point RESET vector
RESET to beginning of
#>SELECTOR | functioning
RESET41 selector (QUIT) coce
FSAS imake power-up byte right te
RESET+2 prevent rebooting system
SELECTOR EXECUTE QUIT CODE>>>

« QUIT CODE (SELECTOR DISPATCHER)

ORG

« Initia

$1000 ;low RAM

1ze Nachine

scos2 ;enable monitor {2nd bank) ROM
scooc (disabla 8@-column firmware
SCO0E idisable slternate char set
sCoo0 ;disable 8Q-column store
SETNORM

INIT

SETVID

SETKBO

RESTART

7 INX

RRERREANEER

s

STA

817 :24 bit map bytes
(2]
BITMAP X Lreserve SBFO0.SBFFF
"
BITMAP X i1rae S300-SBEFF
1
#SCF (reserve S@P0-SIFF, $400-STFF
BITMAR i and free $200-33FF
Prefin:
HOME
CROUT
ATXPFX - ZTXT
PRINT print prefix request
LE) (skip
cv skip
CROUT skip to Sth row
ML
c? |GET_PREFIX
PPFX
TXBUF2 (g€t Achars in prefix
0 129ro marks
TXBUF2+1 .X | end of prefix
TXBUF2 (ogain get Hchars in prefix!
2 ‘null prefix found
TXBUF2.X ;get prefix char
#5850 iupshift
SCNROWS-1,X .put char directly on screen
1 cloop back until done
"” ;zero line input index
cv ;go to start
CROUT of input line
ROKEY (get input char
#S8D JCR?
SETNPFX L¥es 80 input completed
ipreserve A
CLREOL iclaar rest of line
irestore A
#$98 (Escape?
SHOWPF X iyes. so start again
#5938 (Control-X7
SHONPF X (¥yes, S0 start again
#$89 (TAB?
4 1¥9S, S0 reject It
PSFF ‘Delete?
1 .yes, su destructive Davkhspace
#sga (Backspace (Control-H)”
3 ino
e it at peginning ot line,
2 i then disable backspace,
CH clse bachspace
decrement |ine index
CLREOL . destroy character
GETNPF X and return for more input
5 (SCTL-H s0 continue processing
BELL Lring bell
GETNPFX and return for more input
LArAns |
6 inot lower case
¥SOF cupshift lower case
PR
4 (allow periods
rze+l1
4 (disallom 24
9%+
7 callow 9-
L
4 (gisallom A-
:buro input |ine index
827 ;if pretix > 3B chars
RESTART then restarct
TXBUF2 X .store char in buffer

LISTING 1: QUIT CODE (continued)

20 ED FD
4C 64 10

1087
108a

1080
108F
10C1
10Ce

10¢8
10CA
10¢C
10CF
1001

B8F

FF

FC
FD

1

FD

11

FF
1o

FC

FD

02
0

FD
02

BF

1
12

12
BF

3]
12

11
BF

12
i2

204
205
206
207
208
209
218
211
212
213
2314
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
260
251
252
253
254
25%
256
257
258
2538
26@
261
262
263
264
265
266
267
268
269
27
2n
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

|
JSR court iprint char
JMP GETNPFX .back for more input
» Set New Prefix
sEYNPFX CPX %0 111 no input. then
BEQ GETPATH I print error message
STX TXBUF2 .save buffer length byte
JSR MLI
HEX Cé JSET_PREFIX
DA PPFX
BCC GETPATH (MLI call successful
JSR BELL ;MLI call error 30 ring bell
LDA #0 iset Z-flag for next instruction
RESTART! BEQ RESTART ialways restart ‘
+ Get Pathname of Appllcallo«
GEIFAI’M JSR HONE
JSR CR
LDX ATXPATH-ZTXT
JSR PRINT :print pathname request
GETPATHI LDA Lk iskip
STA cv ;. skip
JSR CROUT i skip to 5th row
LDX #0
GETPATH2 JSR RDKEY ;get input char
cup #4398 ;Escape?
BNE 1 ino
LDA CH (Escape either goes to
BNE GETPATH , start of application line
BEQ RESTARTI i or to request for prefix
1 CWP #398 :Control-X?
< 3 BEQ GETPATH iyes. 30 get pathname request
CWP 4389 :TAB?
BEQ 5 iyes. s0 reject it
cwP ASFF JCELETE?
BEQ 3 1yes. so destructiva backspace
CuP #388 :Backspace (Control-H)?
BNE 4 ino
3 Jue BCKSPC ;go to destructive backspace
L) BCS 6 ;>CTL-H s0 continue processing
5 JSR BELL iring bell
JUP GETPATH2 i and return for more Input
6 CuP r380 (Return
BEQ 9 iyes. so input compleoted
CUP #°2"1
8cc 7 inot lower case {
AND A30F jupshift lower case
¢ cuwp 2t
8CC s iallow periods
Cwp 2]
8Cs 5 idisallion 2«
cup *9"+1
BCC 8 ;allow 9- ‘
cuP x'at
8CC 5 ;disalliom A-
& PHA ipresarve A
JSR CLREOL iclear rest of line
PLA irestore A
JSR CouT ;print char
INX ibump input line index
CPX ¥327 iif pathname > 38 chars,
BCS 2 i then clear line
STA TXBUF2.X istore char in buffer
JUP GETPATH2
9 LDA: W% %
JSR couT iprint space
57X TXBUF2 isave buffer length byte
B su:u" ﬂppllcninn Fun
JSﬂ "l
HEX ca JGEY FILE_INFO
DA PFINFO
BCC EXECFILE iMLI call successtul
Jup HANDLERR iMLT call error
EXECFILE LDA FIFILID
cup #SFF
BEQ] :SYS file found so proceed
LDA 01 ;SYS file not found
JMP HANDLERR i SO Print error messIge
1 LDA 10 iset parmiist to
STA CLREFNUM i close all files
J5R el
HEX CC :CLOSE
DA PCLOSE
Bcc 2 MLT call successtul
JUP HANDLERR iMLI call error
2 LOA FIACESS i1solate read-protection
AND L3} : access attribute bit
BNE 3 ifile read-enabled
LDA 4327 .report catch-all
JUP HANDLERR 1/0 ERROR
3 JSR MLI
HEX cCB LOPEN
DA POPEN
8cc 4 :MLT call successful
JMP HANDLERR :MLT call error
4 LDA OPREFNUM istuff file raference number
STA RDREFNUM in READ and
STA EOREFNUM . GETY_EOF parmlists
JSR ML)
HEX DI :GET _EOF
oA PEOF
BCS HANDLERR ‘MLL call error
LOA EOFVAL+2 cof 24-bit file size
BEQ 5 indicates that size
LDA #327 :of rile exceeds 64K,
BNE HANDLERR i then report 1/0 ERROR
8 LDA EOFVAL iplace 16-bit
STA RDCOUNT file size

11a2
11A5

1178

11AC

11AE
11AF
1182
1183

118%:

1187
1188

1188
118D

11C0
11C2
11C4
11C5
11¢7
J11CA
11CC
11CE
110t
1103

11E2
11E4
11ES6
11E8
11E8
11ED
11EF
11F1
11F3
11F5
11F7
11F9
11F8
11FD
11FF
1201
1283
1205
1207
1209
1208
120€

12M
12A2
12aa
1245

12A8
1249
1248
12AD
12aF
1281

1283

1288
1286
1288

1289

CE
02
AR
A2

D4
c1

CE
0.
co

08
c3

CF
Cl
03
C5

AF
cs
AR
Ag

c9
AF
D4
ae

12

BF

20

12
FD

D4
A0
AB
D2

CF
c3

D4
A0
cs
D4
¢

D4
AQD

00
CF
D2
a0
00
cc

A0
oo

EOFVALs1 into READ

RDCOUNT+1 parmlist

MLl

CA READ

PREAD
save READ error status

ML

cc CLOSE

PCLOSE

7 ;should be BCC :62

HANDLERR JMP HANDLERR would be safer
should be BCS (61

READBUF <«<EXECUTE LOADED SYS FILE>x»

i1 cursor at start of |ine
then get another char

. decrement 1ine index,

D print a
space,

. RO back 2 columns to
compensate for COUT advance,
destroy character with space
and again compensate for COUT

get ancther pathname char

LDA
BEQ

JSR

ZTXT X
1
cout

w N

save MLI error code
cskip
i skip
skip to 13th rowm
restore MLI error code
QUIT code for no SYS file found

lTXWYS'S ZTXT

alnays
"40 - INVALIO PATHNAME SYNTAX
2
s44 {PATHNAME NOT FOUND
2
¥345 .VOLUME DIRECTORY NOT FOUND
‘2
¥s$46 (FILE NOT FOUND
2
UTXIOERR ZTXT
almays (HEX 2C saves 1 byte)
UTXFNF XY
PRINT Print error message
GETPATHI

D@ Dé A9

TXPATH

Da C& CE
C6 AD CE
D@ Do CC
CF CE @0
TXNOTSYS

D@ C5 A0
AQ C6 C9

TXIOERR

D2 AD A0
A0 AR AR

TXFNF

€8 A0 CF
D5 CE C4

HEX
ASC

HEX
ASC

'ENTER PREFIX (PRESS "RETURN®!

© TO ACCEPY)"90

"ENTER PATHNAME OF NEXT APPLICATION' @@

37
INOT A TYPE "SYS' FILE'Q0
ar
"1/0 ERROR o0
87

“FILE/PATH NOT FOUND

PF INFO

F1ACESS
FIFILID

JSET/GET _FILE INFO PARMLIST
ipathname painter
18CCasS
:file.type

iaux type
:storage type
(blocks used

Jmod. date

imod. time
.Ccreate, date
iCreate. timg

(OPEN PARMLIST
-pathname pointer
Lo buffer

ref. num

CLOSE PARNLIST

1287

1288
128C
1280
126F
12¢1

12C3
12¢4
12¢5

12ce
12C9

12ce

--End assembly,

02

Qa9 oo o2

412
413
412
a5
416
417
418
415
420
421
422
423
424
425
426
428

889

END OF LISTING 1

LISTING 2: SELECTOR.CODE

1000
1001
1004
1096
1008
108

L0QE
LOgF
Lo12
014

1017
Lo1a
Le10
1O1F

lo21
1023
1025
e27
1024
Lez2c
102€
1030
1032
1035
1038
183A
1e3c
103F
1040
1942
1044
1087
104a
1Qac
104D
104F
1951

CLREFNUM HEX
PREAD HEX
ROREFNUM MEX
DA
RDCOUNT DW
oW
PFOF HEX
EOREFNUM HEX
EOFVAL os
PPFX HEX
DA
DS
bytes. Errors

FA
6F

CF
58

85
o

FC

(=4

11
c3

FD

FE
12

FD

FD
FE

FC

DE NG VB WA -

(SET/GET EOF PARMLIST
cref.num

SIT/G[T PREFIX PARNLIST
pathname pointer

SELECTOR . COOE .
. by Sandy Mossterg »
. » Nerlin-Pro
. Copyright (C) 1987 .
. by NicroSPARC. Inc .
. Concord. MA 01742 .
cv = $25 ICUrSOr row
TXBUF2 = s$280 isecondary text buffer
NLT = SBFOO iMLT cail entry
BITMAP = SBF53 isystem DIt map
KVERSION » SBFFF 1PRODCS version
KEY = scopo ikeypress storage
STROBE « sceln ikeyboard strobe
C3ROM = $C300 ientry to BO-column mode
CLREOP =« SFC42 lear to end of text screen
ROKEY = SFDBC ;get input character
CROUT = SFDBF .ou(pat carriage return
cour = SFDED ioutput character
SETINVY = SFEBD iset inverse text mode
SETNORM = SFEBS :set normal text mode
BELL = SFF3A ;output bell character
PTR = SF§ ipointer
CURLIN = SF8 iSYS table line-1 being printed
SELECLIN = SFC iselected line-1 in SYS table
IXSYSEND = $FO iincex to end of SYS table
IXSYSSEL = SFE tindex to selected line in table
PFXLEN = SFF clength of selected prefix
OPENBUF = s$1Ce0 ‘o buffer for OPEN call
RABUF s $2000 .data buffer for READ"NITE call
PROLTBL = 36940 :SYS tavle In PRODOS
PRO23TBL = $5840 SYS table in PAODOS l 2 113
LCTBL = $D340 :SYS tavle in 2nd LC bank

sst'rnn cLo
LDA

LDA

LDX

1 STA
DEX

BNE

be sate not sorry

sces2 enable monitor ROM
LU

¥316

BITMAR X .freée pages 8-3BL

1

BITMAP+$17 protect page $BF
¥SCF re ve pages 0-1, 4.7
BITHAP o free pages 2.3

JSR

CLOSEALL iensure all files closed

C3ROM enable 88-columns, clear screen
0

SELECLIN select Ist line

"
cv cursor at 1st row
CURLIN start at 1st |line
CROUT .doan ong row
CURLIN
SELECLIN

current line not selected
llSYSSEL index to start of seiected |ing
SETINV ‘make currant |ine inverse
SYSTBL. X
a .end of SYS tavle
: final line char
cout print nonfinal |ine char
? always
4380 convert lsst line char
couT . to negative ASCIl
SETNORM imake subsequent lines normal
CURLIN Bump SYS tahlie |ine
1 always
TXSYSEND index to end of SYS table
CLREOP

1

197E
1a80
1e82
1085
ia87

1089

1088

108E

1890:

1092
1094
1096

i1ie
1113
1115
118
111A
i11s
e
1110
1120
1122
1123
1128
1126

cé
10

85
10

AS
<o
90
A9

E6
10

FC
FF

FC
98

ks

o
<o

12
FD
FC

FO

12
FO

FO
FC

12

12
12

ADDKEY

ADDBS

ADDESC
ADDESCH

ADCCR

*388

SELECLIN
PRYTBL
MAXLIN
SELECLIN
PRYTBL

SELECLIN

MAXLIN
1

Wl

SELECLIN

SELECLIN

PRTTBL

ADOKEY
YSEQ

1
¥SDF
SYSTBL . X
cout

INAXLIN-SYSTBL-1

ADDBS

IXSYSEND
164
ADDKEY
[XSYSEND

TOTORST
IXSYSEND
ADOESCY

SYSTBL-1

.gel keypress

inot there

iBOtCha s0 reset strobe
JUP ARROW

.DOAN ARROW

P>

iND

(CR

AR

.upsy-daisy (1 not

: above 1st line

would de above lst line
s0 select last line
Iways reoisplay SYS table

not on last line
on last line so
select 1st Iine
(gown-town
Inays redisplay SYS table

alloa no more than 21
files in SYS table

cursor at 23rd row after CR

index to end of SYS table
get line char
Delete

1€
(Escape
(Return

iallow no other
: Control char

:not upper case

Jlower case so upshift
istore char in SYS table
iprint line char

inipe out char if

. TABLE exceeds 206 chars
:note carry clear for subtract
ipe out char if pathname
exceeds 64 chars (4 lovels)
ilength OK 50 get another char

disable backspace in 1st column
;printing Control-H through

; COUT does the backspace

ikill char under cursor

iaimays get another char
scape in micdle of line restarts
line entry (carry almays set)
scape at start of line aborts ADD
ex zero warks end of SYS table
ave tabie |t ADD successful
Inays escape from ADD mode
i1t no input then exit

gracetuily (carry always set)
flag successful ADD

mark end of entry by

stripping high bt

(i e. convert tc pos ASCII)
‘bump tine count

always

DELETE
TOTORST

MAXLIN
TORSTRTL
MAXLIN
IXSYSSEL

SYSTBL,Y
‘2

.prevent deleting single

file from SYS tadble
ireduce SYS tadle file count
ilocate sclected file position

INX later compensates

(locate position of next filg
tinal char found

get another nonfinal char
index to next file
Index to selected file

LISTING 2: SELECTOR.CODE (continued)

1127
1124
1120

112F
1131
1133
1135
1137
1134

1138:

113€
1141
1143
1146
1149

114C:

114E

1150

1153
1155
1158
1189
1188
115C
118E
1161
1162
1164
1167

116A.

1160
17e
1173
1174
1176
1178
1178

117
1180

1182

1184
1186
1188
1188
1180
1198
1193
1194
1196
1198
1198
1190

119F:

1142
11A3
1145
1148
11AB
11AC
11AE
11AF
1182

1185
1188
1189
1188

118C
11BE
11ct
11C3
11C8
1ic?

11C9:

11c8
11CD
1100
11D1
1103
1106
Lio7
110A
1100
11DE
1911

L1E2:

L1ES
L1E8
L1E8
L1E0
11F@
L1F3
LIFa

L1F6:

11FY

LIF9

89
SD
s}

03

a9
40
F&

21

12
Fa
BC

81
81

3F
3F
FF
02
05
3F
03
3F

E8

1A
00

12
05
03

04

1
03
3A
17

FE
3F
Fo
12

BC
E8
BS
[

12
EQ
13

FF
8
oe

12

8e
oa

0Q

n
14
FE
[
08

12
12

11

co

12
BF

59

58

3]
ar

02

0z
8F

0z
20

B

02

02

02
8F

11
12

12
Br

203
204
205
206
207
208
209
210
21
212
233
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
25Q
251
282
263
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
278
2N
272
273
274
275
276
277

311
312
313

LDA SYSTBL .Y ioverwrite selected file mith
STA SYSTRL X remainder of SYS file table
BNE 2 iloop back «f not end of table

SAVSYS LDA fPRODONAM :point to pathname
STA PTR 'SELECTOR. PRODOS
LDA £>PRODONAM
STA PTR+L
JSR OPENREAD i50tup, OPEN ang READ file
PHP isave OPEN/READ status
LDA $cast iwrite.enable 2nd LC bank
LDA scasl
LoX ANAXLIN-SYSTBL41
1 LOA SYSTBL-1.X move SYS tabie te 2nd LC bank
STA LCTBL-1,X rogardliess of OP/READ status
Loy KVERSION
CcPY ©2
8cs 2 PRODOS version »1.1 1
STA PROITBL-1 . X save in PRODOS 1 1] file
BCC always
2 STA PRO23TBL-1 X .save in PRODOS 1 271.3 file
3 DEX
BNE 1
PLP irestore OPEN’READ status
BCS TORSTRT JOPEN/READ cal| error
JSR MLI ireset MARK to start of file
HEX CE I SET_MARK
oA MARKPARM (no call arror expected)
LDA RWTRANS iput true length
STA RWCOUNT . of PRODOS
LoA RWTRANS+1 inta R/W
STA RWCOUNT4l | parmliist
JSR MLT iwrite file to disk
HEX CB IWRITE
DA RWPARM
8CC TORSTRT1 :no ARITE call error
TORSTRY JSR BELL igong means call s wrong
TORSTRYT1 JWP RESTART ;all’s well &f no bell

« CR Mand| (Execute Selectled File)

CR LDA [XSYSSEL ipoint to selected tile
ADC #SYSTBL-1 :compensate far carry sel
STA PTR
LDA 4>SYSTBL
STA PTR4+1
JSR OPENREAD (OPEN and READ sclected tile
BCS TORSTRY JOPEN/READ call error
JSR CLOSEALL (CLOSE selected file
JSR MUY iget info to check for SVS file
HMEX C4 JGET _FILE INFO
DA GF IPARN
8CS TORSTRY (GET FILE INFO catl errar
LDA GFIFLTYP I
cup ASFF iSYS file code
BNE TORSTRY inonSYS file s & no-no
LOA TXBUF2 .save length of system
PHA o file on stack
LDA PFXLEN iset length of
STA TXBUFZ file pretix
JSR ML :set file prefix
HEX €6 .SET PREFIX
DA PEXPARN {no call error expected)
PLA .restore length of system
STA TXBUF2 file from stack
JupP RWBUF i<<<EXECUTE SELECTED FILE>>>

beyond SYSTBL

in SYS table

11FA 80 02 314 DA TXBUF2 pathname pointar
11FC 90 IC 315 DA OPENBUF 10.buffer
11FE 00 316 OPREFNUM HEX 00 ret num
A
11FF 04 318 RWPARM HEX 04 READ/ARITE PARMLIST
1200 00 319 ANREFNUN MEX 00 ret. num
1201 0 20 320 DA RWBEUF data butter
123 00 90 321 ANCOUNT DA [request count
1205 @0 00 322 ANWTRANS DA 0 trans count
323 ¢c-ccccccccccececcccccccencaaaa-n
1207 92 324 MARKPARN HEX 02 SET MARK PARNLIST
1288 00 325 MKREFNUM HEX o0 ref num
1229 20 90 00 326 MEX 000000 (MARK=0 (start of file)
327 usssacsesscacevecenssianiansnes
12ec 91 328 PFXPARM HEX SET PREFIX PARMLIST
1280 80 02 329 oA TXBUF2 pathname . pointer
90 suivasssmasessnin i essroEEs SR
128F oA 331 GFIPARM HFX 04 GET_FILE INFO PARMLIST
1210 30 92 332 oA TXBU# 2 ;pathname pointer
1212 @0 333 HEX 00 access code
1213 @0 334 GFIFITYP HEX 00 file typc
1214 00 00 00 335 oS 13 other stuff
1217 90 90 02 00 B0 @2 00 00
1217 20 900
336 4ccececcecececcieeececccacaaanas
337 .« Pathpname of Target PRODOS File
338 . . 5o i i e
1221 AF D3 C5 339 PRODONAM DCI " /SELECTOR/PRODOS™
1224 CC C5 C3 D4 CF D2 AF DO
122C D2 CF C4 CF 53
71
341 .« Text
342 4-------.- s
1231 A0 BA C8 343 TXTPATH REV "PATH:
1234 D4 CL DR
1237 8D 344 HEX 8D
345 TXTEND
346 ERR +-1/SYSTBL trap extens. on
1238 00 00 00 347 os SELSTART+$240. TXTEND
1238 00 90 00 00 B0
34B ecccccccncicccaiocecacacanaanes
349 « Table of System Files
38P iecceccccsccccciiceccccaccnaaan-
1230 AF D3 C5 351 SYSTBL oci "/SELECTOR/BASIC SYSTEM®
1243 CC CS C3 D4 CF D2 AF C2
1238: C1 D3 C9 C3 AE D3 09 D3
1253 D4 Cs 40
1256 @0 352 HEX 00 end-of -table marker
353 STBLEND
1257 00 90 08 355 SELSTART=S300-STBLEND-1
356
12FF 00 357 NAXLIN HEX 00 highest line |
End assembly. 768 bytes. Frrors @
END OF LISTING 2
KEY PERFECT 5.0
RUN ON
SELECTOR.CODE
CODE-5.0 ADDR® - ADDR# CODE-4.0
F86CD9D9 1000 - 104F 284B
D4BB6OD7 1050 - 109F 2708
25528080 10A0 - 10EF 25A7
9374AB2E 10F@ - 113F 22FE
96E4DSFE 1140 - 118F 2395
13FA3866 11990 - 11DF 28DC
DCO8F326 11E@ - 122F 2382
AQGC7E197 1230 - 127F 2701
5678BE35 1280 - 12CF 00
6A4C770D 1200 - 12FF 00
D73B7408 = PROGRAM TOTAL = 0300

mLT
HEX ¢C (CLOSE
DA CLPARM
RTS
- Setup. Open and Read File
OPENREAD LDY "0 ;copy file name to text buffer
STY RACOUNT
1 LDA (PTR) .Y .get char
BPL 3 itinal char
cwp L
BNE 2
STY PFXLEN isave length of file prefix
2 AND #STF iconvert to positive ASCII
STA TXBUF241 .Y :copy nonfinal char to buffer
INY
BNE 1 ialways
3] STA TXBUF2+L .Y :copy final char to buffer
INY
STY TXBUF2 isave length byte
JSR MUY copen file
HEX (=] JOPEN
DA OPPARM
8cs 4 JOPEN call error
LDA OPREFNUM istuff file references
STA RWREFNUM in R/N parmlist
STA MXREFNUM . an¢ SET_MARK parmiist
LDA VSOF imaximum bytés transferable:
STA RWCOUNT 1 | 3SHFOO-$2000-39F00
JSR mLI 1reac file from disk
HEX ca ‘READ
DA RWPARN
] RTS :check error on return to caller
PA .o .o
.
CLPARN DFB 1.0 ;CLOSE PARMLIST call files)
OPPARN HEX 03 (OPEN PARMLIST

LISTING 3: SELECTOR.INST

70
80
99
100

110
120
130
140
150
160

REM
REM »
REM .
REM -
REM *
REM .
REM
DS =

HEI R Aa bt brssrttbatsins

SELECTOR. INST .

BY SANDY MOSSBERG =

COPYRIGHT (C) 1987 -

BY MICROSPARC, INC -

CONCORD. MA 01742 -~
Wesnxemersnssxssexzsaxs

CHRS (4)

VERS = PEEK (49151)
IF NOT VERS THEN PRINT "PRODOS not sup
ported™: END
IF VERS = 1 THEN START = 5700: GOTO 130
START = 5900
PRINT D$"BLOAD PRODOS,TSYS,A$2000"
PRINT DS"RILOAD SFILECTOR CODE AS"START
PRINT D$"BSAVE PRODOS, TSYS, K AS2000"
PRINT D3$"-PRODOS"

OF LISTING 3

