Putting the Apple II Work

Part 1: The Hardware
A high-speed system for the acquisition and analysis of data

The world we live in is anything
but static. We are constantly exposed
to a changing environment that our
central nervous system samples,
analyzes, and, when necessary, re-
sponds to. In many ways, computer
systems are a lot like the human
body, which is equipped with a num-
ber of specialized sensors that con-
vert complex, time-dependent infor-
mation into a form that can be
sampled by the nervous system. The
nervous system processes the incom-
ing information and makes decisions
that cause the system to respond ap-
propriately. Computers, when
equipped with specialized sensors,
also can sample the surrounding en-
vironment, process this incoming in-
formation according to some prede-
termined algorithm, and effect an ap-
propriate response.

Many commercially available trans-
ducers can be used to convert physi-
cal-energy variations into time-vary-
ing electrical voltages. For example,
thermistors can be used to measure
temperature, dimensional changes
can be measured by resistive strain
gauges, and PIN diodes can be used
to measure changes in light intensity.

If a physical parameter changes very
slowly and you have an abundance
of time, you can use a digital volt-
meter, a digital clock, and a pencil to
record data and enter it into the com-
puter by hand at some later time.
However, if you desire an automated
system or if the transducer output
voltage changes at a rate that makes
manual sampling impractical, you
will need a computer-based data-
collection scheme that will reduce the
amount of operator interaction and
still allow the collection of large
amounts of data.

In part 1 of this article, I'll introduce
the hardware required for such a sys-
tem, discuss its operation and con-
struction, and go through prelimi-
nary checkout and testing. In part 2,
I'll provide the Applesoft and ma-
chine-language listings and discuss
their development.and use.

While most computers are quite
proficient when it comes to handling
binary (on/off) voltages, they usually
are not capable of directly handling
the analog voltages from the output
of most transducers. Placing an
analog-to-digital (A/D) converter be-
tween a transducer and the computer

enables the computer to monitor the
changing physical parameter as well
as to automate the sampling process.

An Apple II was selected several
years ago for use in our laboratory.
While many new computers have
since been introduced into the mar-
ketplace, the Apple II continues to be
my first choice for the following
reasons:

1. The Apple II features eight built-
in connectors that make adding
external interface circuitry a
relatively easy task.

2. An abundance of commercial soft-

ware is available.

3. The multicolor, high-resolution
graphics software enables several
channels of data to be displayed
simultaneously.

4. The logical structure of the 6502
and the existence of a miniassem-
bler within the Apple firmware
make machine-language program-
ming relatively easy.

5. It is extremely reliable. When it
has needed repair, service was
easy to find and the repairs
quickly completed.

Design Criteria

I designed the circuitry discussed
in this article to perform the specific
task of digitizing the complex voltage
waveforms produced by a muscle be-
ing exercised. I needed to simulta-
neously sample three channels of
this electromyographic (EMG) infor-
mation so the data would be synchro-
nized at specific points in time.
Because I was -preprocessing the
EMG by taking the absolute value
and then passing those signals
through a low-pass filter, I knew that
the input voltage to the A/D con-
verter would always be positive, that
it would never exceed a maximum
value of 5 volts (V), and that the
highest frequency component would
be no greater than 100 Hz. With this
information in mind, I determined
the design specifications for the A/D
converter.

Essentially, three factors create
major limitations to the accuracy and
usefulness of data collected through
an A/D converter: loss of signifi-
cance, resolution, and sampling rate.

Loss of significance is what occurs
when the maximum magnitude of
the input signal is much less than the
A/D converter’s maximum input
range. As an example, suppose that
you are using an 8-bit A/D converter
that has a maximum input of 10 V.
The input range of 10 V is then
spanned by the 256 (28) possible
voltage levels that the A/D converter
can quantize. When the input voltage
is equal to 10 V, the entire number of
possible voltage levels is used. The
signal-to-noise ratio then can be ex-
pressed as 20 times the logarithm of
the ratio of the input voltage to the
smallest quantized voltage level, or 20
logyo (255/1) = 48 decibels (dB). Sup-
pose the input voltage had been only
2 V. The A/D converter would have
then used only 50 of the 255 possible
voltage levels, reducing the signal-to-
noise ratio to 20 log;, (50/1) = 34 dB.
Consequently, it is important to
~ match the maximum input voltage to
the maximum input range of the A/D
converter whenever possible. _

Resolution is related to the ability to
distinguish between two voltage levels
that are nearly equal. The smallest
magnitude difference that can be

AMPLITUDE
'

SIGNAL

SAMPLING
PULSES

* TIME

I

Figure 1: An example of aliasing caused by a sampling rate that’s too low.

detected defines the resolution of the
system. For an A/D converter that rep-
resents a 10V analog input voltage by
an 8-bit binary number, resolution is
equal to 10/256 = 0.039 V. Under ideal
conditions, the system should be able
to distinguish between two signals
with a voltage difference of 0.039 V.

The sampling rate determines the
computer’s ability to detect time-
dependent changes in the input
voltage. As an example, consider an
input signal that is changing at a rate

s e s T S |
Loss of significance,
resolution, and
sampling rate are three
factors involved in data
collection through an
A/D converter.

equal to 50 V/second. Suppose that
you wanted to resolve the input
signal with a 3 percent accuracy
(within +0.3 V for an input equal to
10 V) at any point in time. An input
voltage that is changing at a rate
equal to 50 V/second changes by
0.3 V in 6 milliseconds (ms). Conse-
quently, to achieve 3 percent ac-
curacy, you must sample the input
signal at least once every 6 ms.

If you don’t have an intuitive feel
for the accuracy you need, a good
rule of thumb is to set the sampling
rate to twice the maximum frequency
component of the input signal. When

you sample too slowly, you can have
problems with aliasing, which results
when a high-frequency signal imper-
sonates a low-frequency signal (see
figure 1). For applications in which
you will be sampling at rates that are
less than twice the highest frequency
component, you must insert a low-
pass filter at the input of the A/D
converter to limit the frequency con-
tent and to ensure faithful reproduc-
tion of the input signal. When you
sample too quickly, you will quickly
expend the available memory in the
computer. However, it is generally
better to have too much data than not
enough.

System Hardware

The AD7570 from Analog Devices
Inc. (Two Technology Way, Norwood,
MA 02062, (617) 329-4700) is a succes-
sive-approximation-type A/D con-
verter that requires only an external
reference and a comparator to pro-
vide either an 8- or 10-bit output rep-
resentation of the input signal. A
three-state output register is used to
buffer the digital output signals, en-
abling several AD7570s to be con-
nected in parallel to a single data bus.
This feature permits you to use a
separate' A/D converter for each in-
put channel, thus providing in-
creased system throughput rate.

The AD7570 uses a conversion
scheme known as successive approx-
imation to achieve the high resolution
and conversion speed necessary for

VOLTAGE
I

Vin T
I |
|
I
|
|
|
INTERNAL !
D/A OUTPUT :
I
|
I
|
I
|

! L&
TIME |l
I
|
|
I
|
]
]

STRT I_

BUSY

Figure 2: Analog-to-digital (A/D) conversion example using the successive-approximation
technique. The A/D converter output makes several steps before matching the input voltage.

some computer applications. Succes-
sive approximation involves compar-
ing the unknown input voltage with
a preset series of voltage increments
that are binary fractions of the max-
imum input range that the A/D con-
verter can handle.

Initialization of the conversion se-
quence begins when the convert start
(STRT) input goes to a logical 1 (see
figure 2). At this time, the most
significant bit (MSB) of the data latch
is set to a logical 1, and the remaining
bits of the data latch are set to a
logical 0. When the STRT line is re-
turned to a logical 0, the actual con-
version process begins. The output of
the internal digital-to-analog (D/A)
converter is sequenced bit by bit from
the MSB to the least significant bit
(LSB).

The external comparator deter-
mines whether the addition of each
successively weighted bit creates a
voltage that is greater than or less
than the input voltage. When the
voltage is greater, the bit is turned off
(set to a logical 0); when the voltage
is less, the bit is left on (set to a logical
1). After this comparison is made be-
tween all bit combinations, the con-
version is complete and the internal
successive-approximation register
contains the binary code that repre-

sents the converted input signal.
Thus, for a converter circuit that can
measure an input voltage varying
between 0 and 10V (10 V is full
scale), the comparisons would be
made between voltage levels that
varied in 0.039V increments (10 V
divided by 256 discrete levels).

When an unknown input voltage is
to be converted, first, the MSB of the
internal D/A converter’s output (one-
half full scale) is turned on, compar-
ing the input voltage to 5 V. If the in-
put voltage is less than 5 V, the MSB
is turned off, the next bit (one-fourth
full scale) is turned on, and the in-
put voltage is compared to 2.5 V. If
the unknown input voltage is greater
than 2.5V, the second bit is left on,
the next bit (one-eighth full scale) is
turned on, and the input voltage is
compared to 3.75 V. (2.5 + 1.25). If
the unknown input voltage is less
than 3.75 V, the third bit is turned off,
the next bit (one-sixteenth full scale)
is turned on, and the input is com-
pared to 3.125 V (2.5 + 0.625). This
process continues in order of de-
scending bit weight until all bits have
been tried. The conversion process is
thus completed, and the 8-bit binary
number representing the unknown
input voltage is ready to be read by
the computer.

I have divided the circuitry asso-
ciated with the A/D converter into
two classifications: circuitry that
deals primarily with analog signals
and circuitry that deals primarily
with digital signals. Figure 3 shows
the circuitry dealing with analog
signals. IC1 is a three-terminal volt-
age regulator that provides —5 V to
the reference voltage terminal (pin 2)
of the AD7570s. I used a 5V reference
because the signals that I am digitiz-
ing do not exceed 5 V. The AD7570
is capable of accepting voltages from
0 to +10 V at the input terminal.
Because the three input sections are
identical to each other, I will describe
only the circuitry associated with In-
put 1. The A/D converter (IC2a)
works in conjunction with the com-
parator (IC5) to determine the binary
representation of the input signal. As
the internal successive-approxi-
mation register changes the weighted
bit pattern, IC5 compares the output
of the internal D/A converter with the
input signal. The results of the com-
parison are fed back to pin 7 of the
AD7570, and the successive-approx-
imation register makes appropriate
adjustments to the weighted bit pat-
tern. The 1k-ohm resistor is con-
nected across the comparator input
terminals to reduce the settling time
of the comparator, which ultimately
reduces the conversion time.

Figure 4 shows the digital circuitry.
As in the description of the analog
circuitry, only one input channel will
be discussed because the other two
channels are identical. The AD7570
has a provision for what is called a
short-cycle conversion. This is_ac-
complished by connecting the SC8
(pin 26) control line to a logical 0,
forcing the converter to stop the con-
version cycle after 8 bits, and reduc-
ing the conversion by two clock
cycles. Even more important than
achieving the time savings of two
clock cycles is the time saved by hav-
ing to read in only 8 data bits per in-
put channel. For my applications, the
increase in sampling rate that could
be achieved was considered to be
worth the resolution that was lost.

Operating under the short-cycle
format, the conversion process still
starts with the MSB and works down

IC1

LM79L05C
| IN ouT

-5V

VREF

AIN

IC2a
AD7570

DGND

IC5
LM311N
2

ouT1

ouT2

AGND

compP

INPUT 1

23

17

7

GNDl >

VREF

= [,

1K

AIN

IC3a
AD7570

DGND

IC6
LM311N

0uT1

+

3K

ouT2

s

AGND

COMP

INPUT 2

GNDl >

e

VREF

AIN

IC4a
AD7570

DGND

1C7
LM311N
2

ouT1

ouT2

AGND

ComP

fifa

+5V
22 1
8

+12V

Ground
1
6, 23

-12V

2
4

Figure 3: A/D converter analog input circuitry.

to DB2. The 8 bits of digitized data
are then contained on data lines DB2
through DB9. The high-byte enable
(HBEN) control line is a three-state
enable for DB9 (MSB) and DBS.
When HBEN is a logical 1, digital
data from the internal latches appears
on the data -lines. The low-byte
enable (LBEN) control line is a three-
state enable for DBO (LSB) through

DB7. When LBEN is a logical 1, digital
data from the internal latches appears
on the data lines. Because the short-
cycle mode uses only data lines DB2
through DB9, HBEN and LBEN are
connected together so that a logical
1 causes the digital data representing
the converted input signal to appear
on the data lines.

The busy enable (BSEN) control

Figure 4: A/D converter digital circuitry.

{25> +sv
4 R < L < <
|25 333833332
o e A TYPICAL OF 8
BSEN peo 22¢
$ 33K paes |21
ek pe7 22
1~ 470pF 1c2b DB6 13
T ao7s70 oocle
o—2%1BEN pBa 25
L_21d, pen pB3 €
28 {5Usy pez L2
L &
| 25 N ¥
22gsen ST 10 42> DB7
$33K ogs L 43> DB6
2eik pe7 2 44> DB5S
~4700F | 1ca3b pee P23 45> DB4
:”P AD7570 1
2] - DBS 26> DB3
L =a e pea4 |15 27> DB2
16
Z_E__B—ué—‘: nas; 48 > DB1
__ D82 3 29> DBO
5C8
26
25
I STRT
27 asen oao |2
$33K oes 22
LY P pe7 22
G Rl - R ﬁ
—o—221HBEN oe [15
DB4
23], pen pa3 1€
28 | susv B2 22
5c8 lc1e
26 - iC14049
T T
b ey 10, sl
1 2 3
PEEK (-16143) ls % o 0 . | 2> aso
2
l =TI [
a2, s
113 b > am1
|ucuozs 11 aN |
PEEK (-16142) | g b [|| |
: °e || |L)
| L l
Peek (-16141) o /. [z |
1: 7
5V ——= '_1 ‘ 4 I
+
+5V L...__.____.__l 3
fs |
| 14 ———
W LE) W ' 2
1C16 | = 3 l
6] anms . > 55
SN7402
o}2 s> r/w
J:z - Y s
,__|1a Mc1a023 26> GND
z 9
8 [4s> oeo
7

I J1l4-2 ISWO

line (pin 27) is used to determine if
the converter status line (BUSY) is
enabled or if it is floating. In this ap-
plication, I connected the BSEN line
to a logical 1. Thus, the BUSY line
always reflects the status of the con-
verter. During the time that the con-
version is being performed, the
BUSY line is set to a logical 0. Upon
completion of the conversion, BUSY
is set to a logical 1.

The 33k-ohm resistor and the 470-
picofarad (pF) capacitor are used to
determine the internal clock fre-
quency. With these values, the clock
frequency is approximately 100 kHz.
Clock activity begins upon receipt of
a conversion start pulse and ceases
upon completion of the conversion.

The remaining circuitry in figure 4
shows the control logic necessary to
initiate the conversion cycles for all
three converters, to sense when the
conversion cycles have been com-
pleted, and to coordinate the transfer
of data into the computer. The circuit
is designed so that the peripheral
card resides in I/O (input/output) slot
7 on the Apple II motherboard. The
device-select signal goes to a logical
0 whenever memory locations (hexa-
decimal) COFO through COFF are ad-
dressed. [Editor’s Note: All addresses
and number values are hexadecimal
unless otherwise specified.] The least
significant 2 bits of the address are
decoded by IC13 and are used to
transfer data from one of the three
converters by enabling the three-state
buffer of the appropriate converter. A
conversion cycle is initiated by per-
forming an LDA #01, STA COFO0 fol-
lowed by an LDA #00, STA COFO0. This
causes the output of the D-type flip-
flop (IC16) to go from logical 0 to
logical 1 and back to logical 0. This
pulse is connected to each of the
AD7570s, causing the three unknown
input signals to be converted simul-
taneously. IC18 is used to indicate to
the Apple II that all three converters
have completed their conversion
cycles. The output of ICI8 is con-
nected to one of the inputs on the
game connector. Performing an LDA
C061 loads the status of the game in-
put into the 6502's accumulator;
rotating the accumulator to the left
and testing the carry bit enables the

—{25> +5v

[ics -| . 54
| +5vV MC1400 I 3 ?IG 2N3904
Cp
| o1 5 | 2
3 4 T2
B 6] ° |
< Ico 2.2K
I 7 | MClas28| S
e i b ouTPUT ¢-{30>ira
6.5 AT~0.047uF 35100-9-
s | :
1 ,,(; TRIG B
1m:z -
|
_L {0
I 20pF 4-40pF
Ms171
Il - I
12z -~ |
13 _~ |
=
+5V +5V +5V 2" I
jis Tls Tls SRELY
2 14 2 14 2 1-5 kHz
EA Q3p EA Q3 EA 2-1 kHz
(10kHz) 3 (100Hz) 3-100 Hz
— - H
IC10 1c11 Q0AFEiun 1c12 =l
MC14518 MC14518 MC14518
1 CLKA Qzp] —1 CLK A Qan' J 1 CLK A 03“ L
9 £] 9 10 9 10
CLKB EB CLKB EBf—— clke EBf—
Ra Rg Ra Ra Rg
7 ,J’s 15 ?ﬂ[’a 15 l?,J: 15
{26>6ND

Figure 5: Crystal-controlled time base used

program to determine whether the
conversions are complete.

It is desirable to take periodic data
samples and to know the relationship
between the magnitude of the data
and time. This enables displaying the
data as a function of time and permits
the analysis of the data with respect
to time. Some analysis techniques
(such as fast Fourier analysis) require
the data to be sampled periodically
and the time between samples
known. I used the mterrupt-request
line (IRQ) going to the 6502 micro-
processor to control when a sample
was to be taken. The IRQ control
line is called a maskable interrupt
because the system will jump to a
given memory location if an interrupt
request is received and if the inter-
rupt system has been enabled. The
CLI (clear interrupt-disable bit) com-

in the A/D converter.

mand is used to arm the 6502 so that
it will respond to the next interrupt
request it receives.

Once a request is received, the 6502
first executes an indirect jump using
the address contained in memory
locations FFFE (LSBs) and FFFF
(MSBs). The 6502 then executes a
short subroutine that serves to
handle the interrupt request. Ulti-
mately, the 6502 is forced to jump to
the memory location contained in
memory locations 3FE (LSBs) and
3FF (MSBs). The Hello program,
which is executed when the com-
puter is first turned on, uses POKEs
to place the desired interrupt entry
point into addresses 3FE and 3FF.
Hello also disables the interrupt sys-
tem so that an interrupt will not be
prematurely executed. Once execu-
tion of the interrupt routine has been

Listing 1: A/D converter system initialization routine.

10 REM HELLO

20 HOME: REM CLEAR SCREEN
30 PRINT
32 PRINT "*
34 PRINT

Hikkhkkhkhkhkhkhkhkhhkhhhhkhhhhhhhhhkhhhhrhhhkhhhhhkhhn

A/D CONVERTER * N
R e TS g

50 REM DEFINE INTERRUPT JUMP ADDRESS

52 POKE 1022,64:POKE 1023,144

54 REM INTERRUPT DISABLE SUBROUTINE
56 PORKE 1016,72:POKE 1017,8:POKE 1018,120:POKE 1019,40:

POKE 1020,104:POKE 1021,96

58 CALL 1016: REM EXECUTE SUBROUTINE TO DISABLE INTERRUPT

REQUEST LINE
80 D$="":

REM DOS CONTROL CHARACTER

82 PRINT D$;"RUN TEST,D1l": REM LOAD AND EXECUTE MAIN APPLESOFT

PROGRAM
99 END

performed, an RTI (return from inter-
rupt) command is executed to force
the processor to return to the instruc-
tion that was being executed when
the interrupt request was first
received.

Figure 5 shows the circuit that con-

trols when a sample is taken. IC8 and

its associated resistors, capacitors,
and 1-MHz crystal form a stable, ac-
curate, square-wave oscillator time
base. IC10, IC11, and IC12 divide the
output frequency of the oscillator so
that several different sampling fre-
quencies can be obtained. IC9 is a
monostable multivibrator that pro-
vides a fixed width pulse that is syn-
chronized to the sampling frequency.
The 2N3904 transistor is used to pro-
vide a low-impedance output to the
IRQ going to the 6502. I designed the
clock circuitry so that sampling rates
of 5 kHz, 1 kHz, 100 Hz, and 10 Hz
can be obtained by closing the ap-
propriate contacts on S1.

Construction Hints

If you have built electronic circuits
before, either from scratch or from a
commercially available kit, you
should consider building the high-
speed A/D converter. If you are care-
ful, the chances of damaging your
Apple are low and the chances of the
circuit working are high. I will try to
increase your probability of success
by providing some advice and some
specific points to check as you finish
building each section.

I recommend that you buy the hob-
by/prototype board for the Apple II
and use wire-wrap construction. This
type of construction goes together

fast and lends itself to easy correction
of wiring errors. The cost of the wire-
wrapping tools is a little high, but it
is doubtful that you will ever wear
them out. You can order the A/D con-
verter ICs directly from the manufac-
turer; the rest of the components can
be purchased from Jameco Elec-
tronics (1355 Shoreway Rd., Belmont,’
CA 94002, (415) 592-8097).

Start by building the crystal-con-
trolled time-base oscillator shown in
figure 5. Beg or borrow an oscillo-
scope and perform the following
tests:

1. Initially, do not connect the ﬁiﬁ
line from the 2N3904 transistor to
pin 30 on the hobby/prototype
board.

2. With the computer turned off,
plug the hobby/prototype board
into peripheral I/O slot 7.

3. Turn the computer on. It should
function normally. If the computer
does not function normally, turn
it off and pull out the hobby/pro-
totype board. Turn the computer
back on to see if normal operation
has been restored. If so, you have
made an error in wiring or you
probably have inserted one of the
ICs into a socket backward.

4. Once you get the Apple to work
with the board plugged in, con-
nect the oscilloscope to pin 2 of
IC10, where you should see a dis-
torted square wave having a fre-
quency approximately equal to 1
MHz. Adjust the 4-40-pF trimmer
capacitor until this frequency is
equal to 1 MHz.

5. Measure the pulse width of the

IRQ output at the 2N3904 tran-
sistor. It should be approximately
equal to 0.1 ms. If there is no out-
put pulse at this point, work your
way back toward pin 2 of IC10 un-
til you find the square wave again.
Once you find the square wave,
you can be pretty sure that you
have made a wiring error some-
where between that point and the
IRQ line.

6. The frequency of the IRQ pulse
train should change as you open
and close the various switches on
S1. If it does not, you should
check the wiring at this point in
the circuit.

7. Initialize a new disk using the
Hello routine shown in listing 1.
Connect the IRQ line to pin 30 on
the hobby/prototype board and
turn the computer on. If it does
not function normally, you prob-
ably have made an error in enter-
ing Hello.

Next, wire the logic circuitry shown
in figure 4 and perform the following
measurements:

1. Execute the following BASIC
statements; you should see the
Start Conversion pulse (pin 5 of
IC16) periodically go from 0 to
+5V.

100 POKE -16143,0
110 FOR I=0 TO 100:NEXT I

120 POKE -16143,1
130 FOR I=0 TO 100:NEXT I
140 GOTO 100

2. Execute the following BASIC
statements; you should see the
Data Strobe pulse for Input 1 (pin
9 of IC13) periodically go from 0
to +5V.

100 X=PEEK(-16143)
110 FOR I=0 TO 100:NEXT I
120 GOTO 100

3. Execute the following BASIC
statements; you should see the
Data Strobe pulse for Input 2 (pin
6 of IC13) periodically go from 0
to +5 V.

100 X=PEEK(-16142)
110 FOR I=0 TO 100:NEXT I
120 GOTO 100

4. Execute the following BASIC
statements; you should see the
Data Strobe pulse for Input 3 (pin
10 of IC13) periodically go from 0
to +5 V.

100 X=PEEK(-16141)
110 FOR I=0 TO 100:NEXT I
120 GOTO 100

If you have made it this far, con-
gratulations. The next phase is the
most difficult to test, so be especially
careful when you wire it up. For now,

you should wire up the AD7570 as-
sociated with Input 1. Keep the leads
between IC2 and IC5 short to mini-
mize the tendency for the circuit to
oscillate. Once you have finished
building the circuit, perform the
following tests to make sure it is
working correctly:

1. The voltage at pin 2 of IC2 should
be equal to -5 V.

2. Execute the following BASIC
statements; you should see the
BUSY line periodically go from 0
to +5 V.

100 POKE -16143,0

110 POKE -16143,1

120 POKE -16143,0

130 FOR I=0 TO 100:NEXT I
140 GOTO 100

If your circuit passed all these tests,
there is a high probability that it is,
wired correctly. You will now need to
test your hardware with the software
routines I'll provide next month in
part 2.m

Acknowledgment
This project was supported by the Human Capa-
bility Corporation of Southfield, Michigan.

Richard C. Hallgren is an associate professor in
the Department of Biomechanics, Michigan State
University, East Lansing, MI 48824. He works on
applications of microprocessor-based systems to
scientific research.

-~

Putting the Apple II Work

Part 2: The Software
A high-speed system for the acquisition

Last month, I described the overall
system approach and provided you
with construction details and pre-
liminary testing. In this concluding
part, I'll discuss the software I've
developed that makes the system
operational.

System Software

The software that enables the com-
puter to collect and display the data
can best be visualized by breaking
down the total program set into a
number of subroutines:

1. A main routine written in Apple-
soft BASIC is responsible for call-
ing all machine-language subrou-
tines, displaying the data on the
high-resolution graphics screen,
and storing the data on disk.

2. A machine-language routine that
controls the digital section of the
analog-to-digital (A/D) converter
and provides high-speed transfer
of the binary data into the Apple
II.

3. A machine-language routine that
scrolls the displayed data horizon-
tally across the video display.

4. A machine-language routine that
enables you to mix text with the
data displayed on the high-reso-
lution graphics screen.

The Applesoft program expects the

and analysis of data

machine-language routines to be
stored on disk drive 1 and to have
the following names:

A/D — routine that controls the
digital section of the A/D converter
Shift — routine that scrolls the data
Hires — routine that writes text onto
the high-resolution graphics screen
Table — graphics character look-up
table

After you have loaded these pro-
grams and stored them onto a disk
initialized with the Hello routine, ex-
ecute the Applesoft routine. If the
program jumps to the A/D routine
but never returns, you probably have
one of two problems:

1. The program did not enter the
A/D routine correctly. Usually,
you will get strange characters ap-
pearing on the screen, and/or the
keyboard will not respond with-
out turning the power off and
then back on.

2. Absolutely nothing happens.
Make sure that the IRQ signal is
getting to pin 30 on the interface
connector.

Once you get the program to go to
the A/D routine and to return, the
end is in sight. If the data does not
plot correctly, check the section in

the Applesoft routine that supports
this. For example, if you try to scroll
the data and the computer does
strange things, take a close look for
mistakes in the scroll subroutines.

Applesoft Routine

Listing 1 gives the program with
comments. This BASIC routine first
loads all the machine-language rou-
tines and then loops until the opera-
tor is ready to digitize data. Once the
operator indicates that data is to be
taken, the program jumps to the ma-
chine-language A/D routine that pro-
ceeds to digitize and store a prede-
termined quantity of data. Program
control then returns to the Applesoft
routine. The data is then plotted on
the high-resolution graphics screen,
and text is added to the plots. You
then have the option of reviewing the
data by scrolling it back and forth
across the video display. If the data
is “good,” you can store the data on
disk. If the data is not good, you can
initiate the acquisition of a new block
of data.

A/D Machine-Language Routine

The machine-language A/D con-
verter subroutine is called from the
BASIC program by executing CALL
—28656. This forces the computer to
execute the subroutine stored at
memory location 9010 hexadecimal.

.

(Unless otherwise indicated, all ad-
dresses are hexadecimal.) Listing 2
gives the program with comments.
Upon entering this subroutine, the
contents of the accumulator, the con-
tents of the X and Y registers, and the
processor status are saved. The sub-
routine then clears the Y register and
loads the X register with the 8 most
significant bits (MSBs) of the memory
address defining the upper limit of
the block of memory reserved for
data storage. The memory address
for the lower limit of the block re-
served for data storage is loaded into
memory locations 0A (least signifi-

~cant bits or LSBs) and 0B (MSBs).
These two memory locations serve as
a pointer to the current location in
memory in which a byte of data is to
be stored.

The system interrupt logic is dis-
abled while the 8 MSBs of the cur-
rent data-storage address (the con-
tents of memory location OB) are
compared with the 8 MSBs of the
maximum allowable address (the
contents of the X register). If the max-
imum limit has not been reached, the
program jumps to memory location
9038. If the maximum limit has been
reached, the subroutine restores the
contents of the accumulator, the con-
tents of the X and Y registers, and the
processor status. After that, the
return from subroutine (RTS) com-
mand forces the computer to return
to the BASIC calling routine.

At memory location 9038, the sub-
routine enables the system interrupt
logic and waits a few machine cycles
to see if it is time to take another
sample. The sampling rate is deter-
mined by connecting the output of
the crystal-controlled oscillator and
frequency-divider logic to the inter-
rupt request line (TRQ) going to the
6502. If it is not time to take another
sample, the subroutine returns to
memory location 9026, where the in-
terrupt logic is disabled. If it is time

to take another sample, the interrupt
logic forces the computer to jump to
memory location 9040. This address
was determined by the Hello pro-
gram, which was executed when the
DOS (disk operating system) was ini-
tially booted.

At memory location 9040, the three

Listing 1: A/D converter main routine written in Applesoft BASIC.

i8 REM HIGH SPEED A0 COMVERTER
20 0§ = "

22 PRINT D$;“BLORD A-D.D1"

24 PRINT D$;"BLORD HIRES.D1"

25 PRINT D$;"BLOAD TRBLE.DL1"

26 PRINT D#:;“BLORD SHIFT.D1"

32 VUTHE 18: PRINT "PRESS THE SPACE BAR WHEN YOU ARE": PRINT “READY TO DIG
ITIZE DATH."
49 GET K#

42 IF K < >

44 GOTO z2184a

188 REM SCROLL DATA TO THE LEFT

162 IF K1 > 28688 THEN RETURH

112 POKE - 38575,238: POKE - 38369,
232: POKE - 3@v742,28: POKE - 38

138 HCOLOR= 1: FOR I = 1 TO 14

132 ¥ = (PEEK (K1 + DI # I)> » 1.5

134 HPLOT 1395 + 1,175 — Y: HEXT I

126 K1 = KI + DI = 14

148 HCOLOR= 2: FOR I =1 TO 14

144 ¥ = (PEEK (K2 + DI * 1)) » 1.5

146 HPLOT 135 + I.175 — Y: NEAXT I

148 K2 = K2 + DI =+ 14

158 HCOLOR= 3: FOR I =1 TO 14

154 ¥ = (PEEK ¢KZ + DI # 13> » 1.5

156 HPLOT 195 + I,175 - ¥: HERT I

108 K3 = K32 + DI * 14:5L = 1

133 RETURHW

298 REM SCROLL DATA TO THE RIGHT

282 IF K1 < 25238 THEN RETURH

212 POKE - 38375,227: POKE - 28369,238: POKE - 38751.,27:

»282: POKE - 38742,255: POKE - 38865,254: CALL - 3697

IF 5L = 8 THEN GOTO 236 .

222 K4 = K1 - 218 # DI:KS = K2 - 210 #* DI:KE = K3 ~ 218 * DI

2328 HCOLOR= 1: FOR I = 14 TO 1 STEF -1

234 ¥ = ¢ PEEK (K4 - DI # I)) » 1.5

CHR$ (32) THEN GOTO 46

- 38731.8:
CALL - 3887e

22 : POKE FPOKE - 38744,

7: P
65,261

POKE - 36744
5]

221

236 HPLOT 14 - 1,175 - Y: HEKT I
233 K4 = K4 -'DI # 14:K1 = K4 + 218 % DI
248 HCOLOR= 2: FOR I = 14 TO 1 STEF - 1

244 ¥ = (PEEK (KS - DI * I»» ~ 1.5

246 HPLOT 14 - 1,175 — ¥: MEXT I

243 K5 = K5 - DI # 14:K2 = K5 + 219 # DI
258 HCOLOR= 3: FOR I = 14 TO 1 STEF -1
254 ¥ = ¢ PEEK (K6 - DI # I») » 1.5

256 HFLOT 14 - 1,175 — ¥: MEXT 1

233 KB = KB - DI * 14:K3 = K& + 218 # DI

293 RETURHM

2188 REM DIGITIZE DATA

2182 HOME : TEXT : UTAB 18: PRINT "DATA IS BEING DIGITIZED."
2132 POKE - 28643,112: POKE - 16143.8: CALL - 2B865&

2288 K1 = 24576:K2 = 24577:K3 = 24578:01 = 3: GOSUB 30988: GOSUB 18008
2256 GET K¥

2234 IF K& = CHR$ (8> THEN GOSUB 160

2256 IF K$ = CHR$ (21) THEN GOSUE 266

2258 IF K& = CHR#% (32> THEN GOTO 2168

2268 IF K$ = CHR$ (27) THEN GOTO 4864

2299 GOTO 2250

3608 REM PLOT DATA

3818 HCOLOR= 1: HGR2

2838 FOR I = 8 TO 283:Y = (PEEK (K1 + DI # I» -~ 1.5

3832 HPLOT 1,175 — ¥: MEKT I

3834 K4 = K1:K1 = K1 + 218 % DI

3836 HCOLOR= 2

3838 FOR I =8 TO 2099:Y = (PEEK (K2 + DI * 12 » 1.5

36848 HPLOT 1,175 - ¥: NEXT I

2041 KS = K2:K2 = K2 + 218 #* DI

3842 HCOLOR= 3

2344 FOR I = 8 TO 289:¥ = (PEEK (K3 + DI # I3} ~ 1.5

3846 HPLOT 1,175 - ¥: HEXT I

2843 KB = K3:K3 = K3 + 218 = DI

3845 RETURN

4888 REM ESCAPE SUBROUTINE

4862 TEXT : HOME

4318 UTAB 4: PRINT "PRESS THE KEY CORRESPOMDING TO YOUR": PRIMT “CHOICE:"

4814 UTAB 18: PRINT "R TO RETURN TO CURRENT DHTR®

4816 UTAB 12: PRINT "5 TO SAVE CURRENT DATA OH DISK"

4818 UTHB 14: PRINT "D TO DIGITIZE MEW DATR"

4619 UTHAEB 16: PRINT "H TO STOP"

4826 UTAB 28: GET K#

4@322 IF K$ = "D" THEN GOTO 219@

4823 IF K = "R" THEM POKE - 16384,8: POKE - 16239,8: POKE - 18237.0:
GOTO 2238

4624 IF K& = "R" THEM POKE - 18394.8: POKE - 15233,8: POKE - 18257,8
G0TO 2256

4826 IF K$ = "H" THEM EHD

4828 IF Kf = "S" THEN GOTO 4854

4623 GOTO 4628

4858 HOME

Listing 1 continued on page 384

AD7570 A/D converters are simulta-
neously instructed to begin the con-
version of their respective input
signals. The subroutine then loops
until all three units have finished
their conversion cycles. The subrou-
tine then proceeds to load the digi-
tized signal from the first AD7570 into
the accumulator. The contents of the
accumulator are then transferred into
the memory location determined by
the contents of memory locations 0A
(containing the 8 LSBs) and 0B (con-
taining the 8 MSBs) and the contents
of register Y (which are added to the
contents of memory location 0A).
After the data has been stored, the
Y register is incremented. The sub-
routine tests the Y register to see if
the increment caused the register to
be equal to zero (a transition from #
FF to #00). Such a transition indicates
that memory location 0B then needs
to be incremented. The subroutine
then proceeds to load and store data
into successive memory locations
until all three converters have been
serviced. A return from interrupt
(RTI) command then forces the com-
puter to return to the point in the
program where the interrupt request
was detected. The subroutine ulti-
mately ends up back at memory loca-
tion 9026, where the interrupt logic
is again disabled and a test is made
to see if the maximum allocated data-
storage address has been exceeded.
Once the data has been digitized
and stored, program control returns
to the BASIC routine. The first 209
data samples from each input chan-
nel are displayed on the high-resolu-
tion graphics screen. Differentiation
of the data is achieved by using a
unique color for each input channel.
The full width of the graphics display
is not utilized for data so that
reference text can be added on the
right-hand side of the screen.

High-Resolution Text Generator

The text-generator software is used
to write textual information on the
high-resolution graphics screen. This
capability lets you identify data
points and display the magnitude of
selected data points along with the
data. The character set for the graph-
ics generator was purposely limited

Listing 1 continued:

4388 UTHB 18: PRINT “"EMTER THE MAME OF THE DATA FILE"
4064 UTAE 14: IMPUT K#

4878 D = "

4372 PRINT D$;"BSAVE ";K#;:",A$6000,L$1608,01"

4899 GOTO <4860

18688 REM IDENTIFY PLOTS AND ADD TEART

18682 POKE 54.,08: POKE 55,143: POKE - 16299.8

18818 UTAB 23: HTAB 1: PRINT "PRESS <{-— OR —> TO SCROLL THE DATA."

16858 UTAB 24: HTAB 1: PRINT “PRESS SPACE BRR TO DIGITIZE MORE DATAH."
18852 UTAB 14: HTAB 32: PRINT “PRESS ESC"

18654 VUTAB 15: HTAB 32: PRINT "TO EXIT."

18868 HCOLOR= 1

1@a62 HPLOT 215,12 TO 213,12: HPLOT 215,20 TO 215,28: HPLOT 217,12 TD 217

»28: HPLOT 223,208 TO 223,12 TO 227,2@ T0 227,12: HPLOT 231,28 TO 231,
12 TO 235,12 TO 235,16 TO 231,16

129964 HPLOT 239,12 TO 233,20 TO 243,20 TO 243,12: HPLOT 249,28 TO 249.12 TO
247,12 TO 251,12

18866 HPLOT 257,28 TO 261,286 TO 259,20 TO 259,12 TO 257,14

le@7a HCOLOR= 2

18672 HPLOT 216,32 TO 228,32: HPLOT 216,46 TO 226,48: HPLOT 213,32 T0 218
»48: HPLOT 224,48 TO 224,32 TO 228,48 TO 228,32: HPLOT 232,48 TO 2322,
32 TO 236,32 TO 236,36 TO 232,38

18874 HPLOT 248,32 TO 249,48 TO 244,489 TO 244,32: HPLOT 258,48 TO 258,32 TO
248,32 TO 252,32

18876 HPLOT 252,32 TO 262,32 TO 262,36 TO 258,35 TO 258,48 TO 262,49

186888 HCOLOR= 3

18832 HPLOT 216,52 TO 2208,52: HPLOT 216,68 T0 226.,58: HPLOT 218,52 TO 213
»60: HPLOT 224,88 TO 224,52 T0 228,66 TO 228,52: HPLOT 232,60 TO 232,
52 TO 236,52 TO 236,56 TO 232,56 : .

188284 HPLOT 248,52 TO 248,68 TO 244,60 TO 244,.52: HPLOT 258,68 TO 258,52 TO
248,52 TO 232,52

18836 HPLOT 238.52 TO 262,52 TO 262,56 TO 253,56 TO 262,56 TO 282,88 TO 2
52,608

188339 RETURH

Listing 2: This routine provides high-speed data transfer from the A/D converter to the Apple
IL.

9010 8D 00 90 STA $9000 Save accumulator

9013 8E 01 90 STX $9001 Save X register

9016 8Cc 02 90 STY $9002 Save Y register

9019 08 PHP Save processor status

901a A0 00 LDY #3500

901C A2 63 LDX #3570 Load X register with maximum
data storage address

901E A9 00 LDA #s00

9020 85 0a STA S0A Memory locations $0A and $0B

9022 A9 60 LDA #560 contain the start address for

9024 85 0B STA $0B data storage

9026 78 SEI Disable interrupt

9027 E4 OB CPX $0B Compare current data storage

9029 D0 0D BNE 59038 address with maximum address

902B AD 00 90 LDA $9000 Restore accumulator

902E AE 01 90 LDX $9001 Restore X register

9031 AC 02 90 LDY $9002 Restore Y register

9034 28 PLP Restore processor status

9035 60 RTS Return to calling routine

9036 EA NOP

9037 EA NOP

9038 58 CLI Enable interrupt

9039 EA NOP

903A 4C 26 90 JMp $9026

903D 00 BRK

903E 00 BRK

903F oo BRK

9040 A9 01 LDA #501 Start A/D conversion

9042 8D FO CO STA SCOFO0

9045 A9 00 LDA #500

9047 8D FO CO STA $COFO0

904A AD 61 CO LDA $co6l Check and see if all conversions

904D 2A ROL are complete

904E BO FA BCS

9050 AD F1 CO LDA $COF1 Load data from input #1

9053 31 0A STA (30R8),Y Store data

9055 c8 INY Increment LSD of data storage
address

9056 DO 02 BNE $905A Branch on result not zero

9058 E6 0B INC $0B Increment MSD of data storage
address

905A AD F2 CO LDA SCOF2 " Load data from input #2

905D 91 0A STA (S0R),Y Store data

905F [of:] INY Increment LSD

9060 D0 02 BNE $9064 Branch on result not zero

9062 E6e OB INC $0B Incrament MSD

Listing 2 continued on page 386

to numbers and uppercase letters to
conserve memory. Listing 3 gives the
high-resolution graphics, text-gen-
erator program, and table 1 is the
graphics character look-up table. The
program takes the textual character
that is to be displayed on the graphics
screen and matches it to a corre-
sponding graphics character con-
tained in the look-up table. This
graphics character is then displayed
on the screen by loading it into the
correct memory location in page 2 of
the high-resolution-graphics memory
block. By using this subroutine, you
avoid having to “draw” text on the
graphics screen using the PLOT com-
mands. The routine is initialized by
using POKE:s to insert the subroutine
entry address into memory locations
(decimal) 54 and 55. Any PRINT
statements that follow will force the
text that was to be printed to be
displayed on the graphics screen.

Data-Scroll Routine

The information that is routed to
the video display when the Apple is
in the high-resolution-graphics mode
comes from an 8192-byte block of
memory that is defined (for the sec-
ondary picture-page buffer) between
memory locations 4000 and 5FFF (see
figure 1). The rationale that deter-
mines the relationship between a
dot’s position on the screen and the
dot’s position in the picture-page buf-
fer is not all that obvious to me. The
best that I have been able to do is to
map out the relationship between a
dot’s position on the screen and a
memory-address location in the pic-
ture-page buffer.

Seven of the 8 bits in each byte con-
tained in the picture-page buffer are
displayed as dots; the eighth bit
determines the color of the other 7
dots. A total of 40 bytes is displayed
on each horizontal line of the video
display. The LSB of the first byte in
a line is displayed on the left-hand
edge of the screen, followed by the
second bit, the third bit, etc. A total
of 280 dots (40 bytes x 7 dots) is
displayed on each of the 192 lines (24
lines x 8 dots) that can be displayed
on the screen.

In order to help myself understand
the picture-page memory map, I con-

Listing 2 continued:

9064
9067
9069
906A
906C
906E

AD
91
c8
DO
E6
40

F3 CO
oa

02
0B

LDA
STA
INY
BNE
INC
RTI

SCOF3
($0R),Y

S906E
$0B

Load data from input #3
Store data

Increment LSD

Branch on result not zero
Increment MSD

Return from interrupt

Listing 3: High-resolution text-generator routine.

8F00
8FO01
8F02
8F04
8F06
8FO08
8FOA
8FO0C
8F0D
8FOF
8F11

8F13
8F14
8F16
8F18
8F1lA
8F1C
8F1D
8F1E
8F1F
8F21
8F23
8F24
8F25
8F27
8F28
8F29
8F2A
8F2B
8F2D
8F2F
8F30
8F32
8F33

8F35
8F 36
8F37
8F38
8F3A

8F3B
8F3C
8F3D
8F 3F
8F 40
8F42
8F43
8F45
8F47
8F49
8F4B

8F4D
BF4F
8F51
8F52
8F53
8F55

8F57
8F59
8F5B
8F5C
8F5SE
8F60
8F6L
8F63
8F65
8F67
8F69
8F6B

08
48
84
c9
FO
c9
Do
18
90
F0O
A5

4a
29
09
85
A5
6A
08
0A
29
85
0A
0A
05
0A
28
6A
18
65
85
68
29
48
A9

4a
47
4A
85
68

48
2a
26
2a
26
2a
26
29
85
a0
Bl

84
A0
48
68
51
91

A4
A5
18
69
85
c8
co
Do
E6
A5
Cc5
90

4E
8D
07
8c
05

5C
5C
25

03
40
2B
25

18
2A

2h

24
2A

1F

88

27

27
27

27
F8
26
00
26

4F
00

2a
2A

4F
2B

04
2B

08
E6
24
24
21
10

PHP
PHA
STY
CMP
BEQ
CMP
BNE
CLC
BCC
BEQ
LDA

LSR
AND
ORA
STA
LDA
ROR
PHP
ASL
AND
STA
ASL
ASL
ORA
ASL
PLP
ROR
CLC
ADC
STA
PLA
AND
PHA
LDA

LSR
LSR
LSR
STA
PLA

PHA
ROL
ROL
ROL
ROL
ROL
ROL
AND
STA
LDY
LDA

STY
LDY
PHA
PLA
EOR
STA

LDY
LDA
CLC
ADC
STA
INY
CPY
BNE
INC
LDA
CMP
BCC

S4E
#58D
$8FOF
#s8c
$8F11

$BF6B
$8F6D
$25

#3503
#540
$2B
$25

#518
$2A

$2a

$24
$2a

#S7F
#$88

$27

$27
$27

$27
#SF8
$26
#$00
($26),Y

S4F
#%00

($28),¥Y
($2R),Y

$4F
$2B

#504
$2B

508
$8F4B
$24
$24
$21
$8F7D

Save processor status

Save contents of accumulator
Save contents of Y register
Test for carriage return

Test for line feed

Relate cursor position to HGR2
screen position

Define HGR page #2

MSB of graphics character
loock-up table

Match text character to graphics
character position in look-up
table

Get first row of graphics design
from lock-up table

Store graphics design in screen
memory block

Jump if all rows not finished
Increment LSD of cursor position

Listing 3 continued on page 388

Listing 3 continued:

8F6D
8F6F
8F71
8F73
8F75
8F77
8F79
8F7B
8F7D
8F7F
8F80
8F81

8900~
8908-
8910~
8918~
8920-
8928-
8930-
8938~
8940~
8948~
8950~
8958-
8960~
8968-
8970-
8978-
8980~
8988-
8990-
8998~
89A0-
89A8-
89B0~
89B8-
89C0-
89C8-
89D0~-
89D8-
89E0-
89E8-
89F0-
89F8-
8A00~-
8A08-
8A10-
8A18-
8A20-
8A28-
8A30-
8A38-
8A40-
8A48-
8A50-
8A58-
8A60-
8A68-
8A70-
8A78-
8A80-
8A88-
8A90-

A5
85
E6
A5
c5
90
A5
85
a4
68
28
60

20
24
25
25
23
04
22
25
4E

00
10
24
24
10
00
0cC
20
20
04
10
00
00
00
00
00
3C
10
3C
3c
20
7E
38
7E
3C
3C
00
00
20
00
04
3C
38
18
3E
3C
3E
7E
7E
3C
42
38
70
42
02
42
42
3C
3E
ac
3E

00
10
24
24
78
46
12
10
10
08
54
10
00
00
00
40
42
18
42
42
30
02
04
42
42
42
00
00
10
00
08
42
44
24
44
42
44
02
02
42
42
10
20
22
02
66
46
42
42
42
42

00
10
24
7E
14
26
12
08
08
10
38
10
00
00
00
20
62
14
40
40
28
1E
02
20
42
42
18
18
08
3E
10
40
2
42
44
02
44
02
02
02
42
10
20
12
02
5A

4A

42
42
42
42

$20
$24
$25
$25
$23
$S8F7D
$22
$25
S4E

00
10
00
24
38
10
0c
00
08
10
7)o
e
00
7E
00
10
5A
10
30
38
24
20
3E
10
3C
7C
18
18
04
00
20
30
6A
7E
3ce
02
44
1E
1E
72
7E
10
20
OE
02
5A
52
42
3E
42
3E

00
00
00
7E
50
08
52
00
08
10
38
10
00
00
00
08
46
10
0c
40
7E
40
42
08
42
40
00
00
08
3E
10
08
32
42
44
02
44
02
02
42
42
10
20
12
02
42
62
42
02
52
12

Table 1: Graphics character look-up table.

Increment MSD of cursor position

Restore Y register
Restore accumulator
Restore processor status
Return to calling routine

00
00
00
24
3¢
64
272
00
10
08
54
10
18
00
18
04
42
10
02
42
20
22
42
08
42
20
18
18
10
00
08
00
04
42
44
42
44
02
02
42
42
10
22
22
02
42
42
42
02
22
22

00
10
00
24
10
62
5C
00
20
04
10
00
18
00
18
02
3C
1€
7E
3C
20
LC
3C
08
te
g F
18
18
20
00
04
0g
78
42
3E
3C
3E
7E
02
3¢
42
38
1e
42
7E
42
42
3C
02
516
42

00
00
00
00
00
00
00
00
00
00
00
00
0c
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0cC
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

| =4 %~~~ =@ g0 13

v O OO U WO

VL A e

AOU"wOoOZr"RygHDOQH@OOQLP

Table 1

Table 1 continued:
8A98- 3C 42 02 3C 40 42 3C 00 s
8AAQ- 7 10 ‘10 30 10 10- 1Le: 00 T
8AA8- 42 42 42 42 42 42 3¢ 00 8]
8ABO- 42 42 42 24 24 18 18 00 \'
8ABS8~- 42 42 42 5A 5A '66 42 00 W
8ACO- 42 42 24 18 24 42 42 00 X
8ACS8- 44 44 44 38 10 10 10 00 ¥
8AD0O - 7 40 20 18 04 02 7E 00 2
Listing 4: Right-to-left scroll routine.
8700 A9 00 LDA #500 Initialize base address
8702 8D FE 87 STA $87FE
8705 A9 40 LDA #540
8707 8D FF 87 STA $87FF
870A A9 02 LDA #s502 Initialize block counter
870C 8D FD 87 STA $87FD _
870F a0 08 LDA #3508 Initialize box counter
8711 8D F7 87 STA S87F7
8714 20 50 87 JSR $8750 Jump to main routine
8717 18 CLC
8718 A9 28 LDA #s28 Set up for second block
871A 6D FE 87 ADC S87FE ’
871D 8D FE 87 STA S87FE
8720 CE FD 87 DEC S87FD
8723 DO EA BNE $870F Jump if second block not
complete
8725 A9 06 LDA #3506 Number of boxes remaining (two
boxes reserved for text)
8727 8D F7 87 STA S87F7
872A 20 50 87 JSR $8750 Jumo to main routine
872D 60 RTS Return to calling routine
8750 AD FE 87 LDA SBT7FE Save base address
8753 8D FB 87 STA $87FB
8756 AD FF 87 LDA $87FF
8759 8D FC 87 STA $87FC
875C A9 08 LDA #s08 Initialize row counter
875E 8D FA 87 STA $87FA
8761 AD FB 87 LDA SB7FB Set up LSB of left hand side of
sCreen
8764 8D E6 87 STA SB7E6
8767 18 CLC
8768 69 02 ADC #502 Set up shift distance
876A 8D E3 87 STa S87E3
876D 18 CLC
876E 69 1A ADC #51a
8770 8D FO 87 STA $87F0 Set up LSB of right hand side of
screen
8773 8D F3 87 STA $87F3
8776 EE F3 87 INC $87F3 Next byte
8779 AD FC 87 LDA S$BT7FC Set up M3B of
877C 8D E4 87 STA $SB7E4 left hand side of screen
877F 8D E7 87 STA $87E7
8782 8D F1 87 STA $87F1 right hand side of screen
8785 8D F4 87 STA $87F4
8788 20 EO 87 JSR $87E0 Jump to shift routine
878B 18 CLC
878C A9 04 LDA #3504 Add 4 to MSB of
878E 6D E4 87 ADC S87E4
8791 8D E4 87 STA $87E4 left hand side of screen
8794 8D E7 87 STA $87E7
8797 8D F1 87 STA $87F1 right hand side of screen
879A 8D F4 87 STA $87F4
879D CE FA 87 DEC S8TFA Decrement row counter
8740 D0 E6 BNE $8788 Jump if box not complete
87a2 186 CLC
87A3 A9 80 LDA #$80 Set up next box address
87A5 6D FB 87 ADC $87FB
87A8 8D FB 87 STA $87FB
87AB A9 00 LDA #500
87AD 6D FC 87 ADC $8TFC
87B0 8D FC 87 STA $87FC
B7B3 CE F7 87 DEC $87F7 Decrement box counter
B87B6 DO A4 BNE $875C Jump if block not complete
B87B8 60 RTS Return to calling routine

Listing 4

Listing 4 continued:

87E0
B7E2
87ES5
87ES8
87E9
87EB
87ED
87EF
87F2
87F5

$4000
$4080
$4100
$4180
$4200
$4280
$4300
$4380
$4028
$40A8
$4128
S41A8
$4228
$42A8
$4328
$43A8
$4050
$40D0
$4150
$41D0
$4250
$42D0
$4350
$43D0

A2
BD
9D
E8
EOQ
DO
A9
8D
8D
60

00
02 40
00 40
1c
F5
00

1Cc 40
1D 40

16384
16512
16640
16768
16896
17024
L7152
17280
led24
16552
16680
16808
16936
17064
17192
17320
16464
16592

16720 |

16848
16967
17104
17232
17360

Each box is

LDX #500 Set up byte counter

LDA $4002,X Shift 2 bytes (14 points) left

STA $4000,X

INX Increment counter

CPX #s1c

BNE $87E2 Jumpo if shift not complete

LDA #500 Clear right most 14 points

STA $401cC

STA $401D

RTS Return to calling routine
O NMTLTNUOUROOOCOUORROANMITNWOUEROOCMUDAGLOANM N W
CoO00O0CO0C0O0O0O0OCOCOAdddAdddAd A A MNNNONNCNCN®N
L T T T R R O T T T T T Ty S o 7 O 7, T T R O O O O T T O T O T R A T Y) T T T T NPT PPN

CHNMITINOEODANROSOANMTNO~ODNOANMT OO

OHANMaEaNOUFROA A A A AANNNNNNNNNNMMO MMM Mo

formed by eight rows:
Figure 1: A map of the Apple II's high-resolution graphics screen.

0 $0000

1024 $0400

20438 $0800

4096 $1000

5120 $1400

6144 $1800

l
[
|
L
L
[
[
[

|
]
]
1 3072 $0C00
|
]
]
]

7168 $1C00

Box 1

Box 2

Box 3

Block 1 Box 4

Box 5

Box 6

Box 7

Box 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row §
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row §
Row 6
Row 7
Row 8

$4000
$4400
$4800
$4C00
$5000
$5400
$5800
$5C00

$4080
$4480
$4880
$4C80
$5080
$5480
$5880
$5C80

$4100
$4500
$4900
$4D00
$5100
$5500
$5900
$5D00

$4180
$4580
$4980
$4D80
$5180
$5680
$5980
$50D80

$4200
$4600
$4A00
$4E00
$5200
$5600
$5A00
$5E00

$4280
$4680
$4A80
$4E80
$5280
$5680
$5A80
$5E80

$4300
$4700
$4B00
$4F00
$5300
$5700
$5B00
$5F00

$4380
$4780
$4B80
$4F80
$5380
$5780
$5B80
$5F80

Block 2

Box 1

Box 2

Box 3

Box 4

Box 5

Box 6

Box 7

Box 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

$4028
$4428
$4828
$4C28
$5028
$5428
$5828
$5C28

$40A8
$44A8
$48A8
$4CA8
$50A8
$54A8
$58A8
$5CA8

$4128
$4528
$4928
$4D28
$5128
$55628
$5928
$5D28

$41A8
$45A8
$49A8
$4DA8
$51A8
$55A8
$59A8
$5DA8

$4228
$4628
$4A28
$4E28
$5228
$5628
$5A28
$5E28

$42A8
$46A8
$4AA8
$4EA8
$52A8
$56A8
$5AA8
$5EA8

$4328
$4728
$4B28
$4F28
$5328
$5728
$5B28
$5F28

$43A8
$47A8
$4BA8
$4FA8
$53A8
$57A8
$5BA8
$5FA8

Table 2: Picture-page buffer/memory-address organization as discussed in the text.

Block 3

Box 1

Box 2

Box 3

Box 4

Box 5

Box 6

Box 7

Box 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2

. Row 3

Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8

$4050
$4450
$4850
$4C50
$5050
$5450
$5850
$5C50

$40D0
$44D0
$48D0
$4CDO
$5000
$54D0
$58D0
$5CD0

$4150
$4550
$4950
$4D50
$5150
$5550
$5950
$5D50

$41D0
$4500
$490D0
$4DDO
$51D0
$5500
$5900
$5DD0

$4250
$4650
$4A50
$4E50
$5250
$5650
$5A50
$5E50

$42D0
$46D0
$4AD0O
$4EDO
$5200
$56D0
$5AD0
$5EDO

$4350
$4750
$4B50
$4F50
$5350
$5750
$5B50
$5F50

$43D0
$470D0
$4BDO
$4FDO
$53D0
$57D0
$5BD0
$5FDO

Listing 5: Left-to-right scroll routine.

8700 A9 00 LDA #500
B702 8D FE 87 STA $87FE
8705 A9 40 LDA $#540
8707 8D FF 87 STA $B7FF
870A A9 02 LDA $#502
870C 8D FD 87 STA $87FD
870F A0 08 LDA $#508
8711 8D F7 87 STA $87F7
8714 20 50 87 JSR $8750
8717 18 CLC

8718 A9 28 LDA $#528
871a 6D FE 87 ADC $87FE
871D 8D FE 87 STA $87FE
8720 CE FD 87 DEC $87FD
8723 D0 EA BNE $870F
8725 A9 06 LDA #506
8727 8D F7 87 STA $87F7
872A 20 50 87 JSR $8750
B72D 60 RTS

8750 AD FE 87 LDA $87FE
8753 8D FB 87 STA $S87FB
8756 AD FF 87 LDA $BTFF
8759 8D FC 87 STA $87FC
875¢C A9 08 LDA #3508
B7SE 8D FA 87 STA $87FA
8761 AD FB 87 LDA $87FB
8764 8D E3 87 STA $87E3
8767 18 CLC

8768 69 02 ADC $s502
876A 8D E6 87 STA $87E6
876D 18 CLC

876E 69 FE ADC #SFE
8770 8D FO 87 STA $87F0
8773 8D F3 87 STA $87F3
8776 EE F3 87 INC $87F3
8779 AD FC 87 LDA $87FC
877cC 8D E4 87 STA $87E4
877F 8D E7 87 STA $87E7
8782 8D F1 87 STA $87F1
8785 8D F4 87 STA $87F4
8788 20 E0 87 JSR $87E0D
878B 18 CLC

878C A9 04 LDA #504
878E 6D E4 87 ADC $87E4
8791 8D E4 87 STA $87E4
8794 8D E7 87 STA $87E7
8797 8D F1 87 STA $87F1
879a 8D F4 87 STA $87F4
879D CE FA 87 DEC $S87FA
87A0 D0 E6 BNE $8788
87A2 18 CLC

87a3 A9 80 LDA #5$80
87A5 6D FB 87 ADC $87FB
87A8 8D FB 87 STA $87FB
87AB A9 00 LDA #500
87AD 6D FC 87 ADC $87FC
87RB0 8D FC 87 STA $87FC
87B3 CE F7 87 DEC $87F7
87B6 DO A4 BNE $875¢C
87B8 60 RTS

87E0 A2 1B LDX #51B
87E2 BD 00 40 LDA $4000,X
87E5 9D 02 40 STA $4002,X
87E8 CcA DEX

87E9 E0 FF CPX #SFF
87EB D0 F5 BNE $87E2
87ED A9 00 LDA #500
B7EF 8D 00 40 STA $4000
87F2 8D 01 40 STA $4001
87F5 60 RTS

Text continued from page 386:

sider the total display to be made up
of three blocks; each block is made up
of eight boxes; each box is made up
of eight rows. Table 2 shows a break-

Initialize base address

Initialize block counter
Initialize box counter
Jump to main routine

Set up for second block

Jump if second block not
complete

Number of boxes remaining (two
boxes reserved for text)

Jump to main routine

Return to calling routine
Save base address

Initialize row counter
Set up LSB of right hand side of
screen

Set up shift distance

Set up LSB of left hand side of
screen

Next byte
Set up MSB of
right hand side of screen
left hand side of screen
Jump to shift routine
Add 4 to MSB of
right hand side of screen

left hand side of screen

Decrement row counter
Jump if box not complete

Set up next box address

Decrement box counter

Jump if block not complete
Return to calling routine

Set up byte counter

Shift 2 bytes (14 points) right

Decrement counter
Jump if shift not complete
Clear left most 14 points

Return to calling routine

down of the picture buffer organized
so that each row has a memory ad-
dress associated with it that defines
the leftmost 7 dots (plus the associ-

e

VIDEO MONITOR

1—1—D

WP

M\

SCROLLING WINDOW

Figure 2: A representation of how the scrolling-window software described in the text relates

to the data displayed on the video monitor.

ated color bit) for each horizontal line
displayed on the screen. Notice that
the memory address for each
horizontal line on the display is not
in sequential order with respect to
magnitude, but that there is a repeat-
ing pattern.)

The data-scroll routines let you
control a window that permits ex-
amination of blocks of 209 adjacent
samples of data. The position of this
window is controlled by the left and
right arrow keys (see figure 2). The
data-scroll routines are broken up
into two machine-language pro-
grams. Listing 4 gives the ma-
chine-language program that shifts
data from right to left across the
screen; listing 5 gives the routine that
shifts data from left to right.

Without going into exhaustive de-
tail, these routines move the contents
of the picture-buffer memory so that
the displayed data shifts either 14
data points to the left or the right on
the screen. The rightmost (or left-
most) 14 data points are cleared so
that new data can then be shifted in.
The subroutines have to take into
consideration the picture-buffer
structure shown in table 2 (it would
have been a lot easier if the picture
buffer had been organized in a sim-

r

ple sequential manner). The shifting
effect results in a window that can
move back and forth across the mem-
ory block containing the digitized
data.

Conclusion

I encourage those of you with
modest data-acquisition and data-
analysis requirements to consider the
use of a system similar to the one
described here. In our laboratory, we
have found it to be a relatively inex-
pensive way to pursue research inter-
ests and have no doubt that it will
continue to be a valued part of our
laboratory in the years to come. The
only items required are an Apple II
and the circuitry and listings
presented here.m

Richard C. Hallgren is an associate professor in
the Department of Biomechanics, Michigan State
University, East Lansing, MI 48824. He works on
applications of microprocessor-based systems to
scientific research.

Author’s Note: If you do not have either
the time or capability to construct such a
project, please write to me and I will direct
you to a source for the hardware and the
system software.

