TIPS "N TECHNIQUES

MousING
AROUND

Use the mouse or a joystick for fast,
error-free menu selections! These simple
programs demonstrate the techniques.

eyboard input can bring out the klutz in you. Fingers

turn stupid, tripping over the keys in a frenzy of typos.

If your digits act like 10 sore thumbs at the Apple key-
board, why not try a mouse or joystick for menu selection? As
Macintosh owners well know, the mouse guarantees fast, error-
free selection. No typing, or typos.

The technique for mouse and joystick input shown in Listings
1 and 2 can be easily implemented in your own programs, at a
very small cost in added lines of code.

Listings 1 and 2 show how to initialize the mouse, print a menu
on the screen, move the cursor on the screen in response to the
movement of the mouse or joystick, get the cursor position from
the screen, and use that cursor position to determine the user’s choice
from the menu screen. The programs are not particularly uscful
in themselves, but show the techniques involved in using the input
devices as screen pointers,

MOUSEPOINTER (Listing 1) uses the mouse as the input device,
It works in the 40-column mode of ProDOS only. JOYPOINTER
(Listing 2) uses the joystick as the input device, and it works in
the 40-column mode under either DOS 3.3 or ProDOS.

USING THE PROGRAMS

To use the programs, attach the mouse or joystick to the game
port (or DeskTop Bus of the IIGS). and RUN the appropriate pro-
gram. If you're using a mouse card, it should be in slot 4. A menu
and a blinking asterisk cursor will be displayed. As you move the
mouse or joystick, the cursor will match that movement on the
screen.

With the cursor positioned over the menu item of your choice,
press the mousce or joystick button. A message confirming which
option was chosen will be displayed until you press the button again,
The menu will then reappear for another choice. Notice that as the
cursor moves over the letters in the menu items, the letters do not
disappear, but are redisplayed after the cursor moves on. Strangely
cnough, this was one of the most difficult effects to program.

ENTERING THE PROGRAMS
To enter MOUSEPOINTER, key in Listing 1 and save it with
the command:

SAVE MOUSEPOINTER

To enter JOYPOINTER, key in Listing 2 and save it with the
command:

SAVE JOYPOINTER

For help in entering Nibble listing, see the instructions in the Typ-
ing Tips Section of this issue.

TABLE 1: Variables
| Variable Function
DU Dummy variablc used to beep the speaker
| 1 Loop index that sets the duration of the beep
. MB Holds the button status (1-4 for mouse: > 127 or
< 128 for joystick)
MX Column coordinate of the cursor position
MY Line coordinate of the cursor position
oD Memory location corresponding to the screen posi-
tion where a character was replaced by the cursor
OL ASCII code for the character that was replaced by
the cursor in location OD
PK Memory location corresponding to a screen posi-
tion, as computed from the mouse or joystick input

HOW THE PROGRAMS WORK

The Mouse Routine

Listing 1 is made up of many subroutines. The code was written
to be easily understood rather than to optimize either memory space
or execution time. The main routine is in lines 10-50; all subrou-
tines are called from here. The variables and ProDOS commands
used in the programs are shown in Tables 1 and 2, respectively.

Line 10 calls the mouse initialization subroutine at line 500. Line
500 designates the mouse as the output device with PR#4, and sends
a 1 to the mouse firmware. This line is necessary to prepare the

mouse for use (wake it up, so to speak). The mouse is always
plugged into slot 4 on the Ilc. but may not be in slot 4 on the Ile
or IT Plus. Slot 4 is the recommended slot, but if your mouse is
in another slot, simply change the number after PR# in lines 80
and 500.

Line 510 resets output to the screen after the message has been
sent to the mouse.

Line 20 calls the screen menu print routine at line 250. Lines
250-370 print the screen menu, using VTAB and HTAB. Any line
or column position can be printed to, with some exceptions.

If you print to any part of line 24, or the 40th column of line
23, be sure to end that print statement with a semicolon (;). This
will prevent an automatic linefeed that will scroll the top line off
of the screen and ruin your menu (see line 370). Using the 40th
column of line 24 will cause a linefeed even with the semicolon
at the end of the statement. Two other column positions may also
be unusable; more about that when we get to the INPUT statement.

Line 30 calls the subroutine at line 70 that reads the movement
of the mouse and translates it into cursor movement on the screen.

TABLE 2: ProDOS Commands

Command

PRINT CHRS(4); "'PR#4""

Function
Sends future output to slot 4.

PRINT CHRS{4); 'PR#0"’ Sends future output to the screen

PRINT CHRS(4); “'IN#4" Reads future input from slot 4.

PRINT CHRS$(4); “'INAO™ Reads future input from keyboard.

Line 70 initializes a character variable to blank (ASCII 160 =
blank), and initializes an integer variable to 2039, the address of
a memory location that will be used later. Line 80 sets input to
be read from the mouse port, urning off the keyboard. This causes
the INPUT statement in line 90 to read the mouse’s position in-
stead of waiting for keyboard input.

The INPUT statement is the best way 1o get a position reading
from the mouse, but it has a problem: it insists on printing a prompt
on the screen. If you don’t supply one inside the quotation marks,
it will use its own, the question mark (?). Either way, something
shows up on the screen where you don’t want it.

This can’t be avoided, but the effect can be minimized. Use a
VTAB to move to a line where you will not use column | or 40,
Then use HTAB 40 to move to the end of the line. Next. supply
the null character as the prompt by putting the two quotation marks
next to each other (***"), and add a semicolon (;) to prevent the
linefeed. You won't see the prompt on your menu screen, but both
columns 1 and 40 will be set to blank.

The mouse input comes in three parts, and all three must be re-
quested in the same INPUT statement. The inputs are, in order,
the X-coordinate (column position), the Y-coordinate (line posi-
tion), and a button status code. The coordinates each have a range
of 0-1023; coordinates 0,0 are the upper-left corner of the screen.
and the numbers increase as the mouse is moved to the right or
down. (Line 80 initializes the mouse to the 0.0 coordinates.)

The mouse button status code range is 1-4 as shown in Table
3. When you push the mouse button, the status changes from
released/released to released/pushed (code 2) for one pass and there-
after, it goes to status pushed/pushed (code 1) for as long as you
hold the button down. When you release the button, it becomes
pushed/released (code 3) for one pass, and then settles into
released/released (code 4). If at any time you press a key on the
keyboard, the mouse button status code will change from positive
to negative, allowing you to check for a keyboard interrupt.
MOUSEPOINTER makes no use of this feature, except that line

150 checks the status code for both a positive and a negative two.
You can reset the mouse button status code to a positive value with
POKE —16368.0.

Now that you have the mouse information (X-coordinate, Y-
coordinate and button status code) for this pass through the loop,
one more important thing must be done. Line 100 resets input to
read the keyboard, rather than the mouse. Failing to do this can
create quite a colorful problem if your program later crashes.

In a crash, the operating system first displays an error message
and then attempts to get new input. Since input is still set to the
mouse port, however, what it gets is a three-variable mouse read-
ing, and it can’t make heads or tails of that. Confused, it prints
SYNTAX ERROR and rings the bell. Then it tries again to get good
input, but again it gets a mouse reading. The gist of all this is that
your speaker will begin beeping its little heart out while your screen
fills up with SYNTAX ERROR messages. Not a pretty sight.
Worse, the original error message and line number left by the crash
quickly scroll off the screen into never-never land. Line 100 will
fix this for future lines, but if line 90 caused the crash, you'll see
the SYNTAX ERROR display. (This disheartening display can be
stopped by pressing Control-Reset.)

Lines 110 and 120 handle the sensitivity of the mouse. As you
move the mouse, the X- and Y-coordinates change at the rate of
about 47 digits to the inch, up to a maximum of 1023, both horizon-
tally and vertically. The range used by HTAB and VTAB to move
the cursor to the limits of the screen is 0-39 for the X-coordinate
and 0-23 for the Y-coordinate. The mouse moves only about one
inch as its X-coordinate goes from 0-39, and about half an inch
as the Y-coordinate goes from 0-23. This makes the mouse much
too sensitive to use with any accuracy, and it wastes the other 984
increments of mouse output.

Lines 110 and 120 decreasc this sensitivity by dividing the ini-
tial mouse reading by a factor of 4 for the X-coordinate and 6 for
the Y-coordinate. If you want the cursor to be more responsive to
the mouse, just use lower factors. If you want it to be less respon-
sive, increase them. The X-coordinate factor can reach a maximum
of 25 and the Y-coordinate a maximum of 40, but at those levels,
you’ll need a big desk. At the settings of 4 and 6, you'll need an
area 3 inches by 3% inches in which W move the mouse, il you
want to move the cursor to all corners of the screen.

Lines 130 and 140 just prevent the Y coordinate from exceed-
ing 24 and the X coordinate from exceeding 40 to avoid an unpleas-
ant crash.

The next section of code has a very important purpose. As you
move the cursor, it obliterates any character on the screen at that
position. So before the cursor is moved there, the program must
find out what character is about to disappear and save it, so that
it can be replaced when the cursor moves away.

The characters you see on your 40-column by 24-line monitor
are actually stored in a portion of the memory, and the image on
the screen 1s constantly restored from that memory. When you place
a character on the screen using the keyboard, the computer is actu-
ally putting the character in the memory location that corresponds
to that position on the screen. For instance, the memory location
with the address 1024 corresponds to the upper-left corner posi-
tion. If you were to place a character into that memory location,
it would immediatcly appear at the corresponding position on the
screen. For instance, type POKE 1024,65. An A will appear in
the upper-left corner of the screen (as 65 is the ASCII code for A).

Once you know the corresponding memory location for a posi-
tion on the screen, you can use that information to move the cursor
around, and to determine what character is at any particular posi-
tion. Now the bad news: the memory locations that correspond to
the character positions on the screen are not contiguous in memory.
In order to find out what memory location corresponds to the screen
position 5,10 (column 5, line 10), you need a formula. We'll deal
with that later.

There is a lot going on in line 150. First, the mouse button is
checked to see if it has been pressed. If it has, the speaker beeps

to show that the button push was noticed. The program then jumps
to the RETURN at line 220.

If the button has not been pressed. there is a new mouse reading.
Before the cursor is moved to its new position on the screen, the
character that the cursor overwrote must be restored. The old charac-
ter’s ASCII code is stored in the variable OL (old letter), and the
address of the memory location corresponding to its screen posi-
tion is stored in OD (old address). IU’s a simple matter to POKE
OD,OL and restore that charagter to its original screen position.

If this is the first time through the loop, there is no old address
or old letter because the cursor has not yet been placed on the screen.
Line 70 initializes OD and OL so that, the first time through the
loop, a safe location is POKEd that does no harm. OD and OL place
a blank at line 24, column 40. This spot cannot be used in a PRINT
statement because of the automatic linefeed. There are lots of other
safe POKEs. however, (e.g.. POKE 49200,0). In later passes
through the loop, lines 180 and 190 set OD and OL.

Line 170 holds the formula that translates the column and line
position on the screen to the corresponding memory location, The
credit for this formula, goes to the Beagle Bros Tip Book #5.

PK (PEEK address) is now set to the memory location correspond-
ing to the position where the cursor will be placed next. Line 180
sets the OL by PEEKing into this location; line 190 sets OD equal
to PK.

Line 200 POKEs the cursor character into memory so that it
appears on the screen. 1've used 170, the ASCII code for the aster-
isk (*). You could just as easily use 171 {the plus sign) or any other
character.

Line 210 is the end of the loop. The routine now loops back to
get a new mouse reading, and it continues to loop, updating the
mouse position until the button is pressed, and line 220 causes a
RETURN from the subroutine.

When the mouse movement routine returns, MX holds the column
in which the cursor is located and MY holds the line. These vari-
ables are used to determine what choice the user has made. Line
140 directs flow to the subroutine that implements this choice. The
choice is determined by the values of MX and MY, which show
where the cursor was on the screen when the mouse button was
pushed. Line 400 is a default message that is overwritten when a
legal choice is made.

Lines 410 and 420 show how to handle menu choices that take
up an entire line. The code simply checks to see if the cursor was
on the appropriate line (if MY equals the line number) when the
button was pushed. If there is more than one choice on a single
line of the menu, then MX (the column position) will also need
to be checked. Lines 430 and 440 check for one of two choices
on a line. If the menu contains more choices, this section is more
complicated.

Line 450 tests for the quit option. If that option is chosen, this
line prints GOODBYE and ends the program.

The appropriate message now remains on the screen until the
mouse button is pressed. Line 470 accomplishes this wait by sim-
ply calling the mouse input subroutine again. The subroutine returns
MX and MY. but the information is not used.

Line 480 returns program flow to the main routine, where line
50 starts the sequence all over again.

The Joystick Routine

Listing 2 is the same program adapted for use with a joystick.
The main difference between the two programs is the input subrou-
tine starting at line 60.

In Listing 2 you don't have to initialize a joystick, or set input
1o the joystick device. Lines 70 and 80 get MX and MY. With
the joystick, you don’t need to use the INPUT statement, and thus
don't have its associated problems.

TABLE 3: Mouse Button Status Codes

Previous Present

Status Status Code
Pushed Pushed 1
Released Pushed 2
Pushed Released 3
Released Released B

Line 90 retrieves the joystick button status, which is stored in
memory location 49249. The joystick status is not as precise as the
mouse status: it has only two possible states. When the button is
pressed, the value in location 49249 is greater than 127; when the
button is not being pressed, the value is less than 128. Line 160
sounds a tone signaling that the button has been pressed. If the but-
ton is held down too long, it could be read as two presses. The
tone tells you that the press was received and to release the button.

Lines 100 and 110 adjust the sensitivity of the joystick inputs,
just as lines 110 and 120 in Listing 1 adjusted the mouse readings.
The joystick is less sensitive than the mouse, with an output range
of only 0-255, about one-fourth that of the mouse. Dividing this
reading by 6 horizontally and 10 vertically will give you the least
sensitive setting possible. And even art that, getting the cursor to
the right choice on the screen is a little like playing an arcade game.

Lines 120-150 set the boundaries that keep the cursor on the
screen.

N

LISTING 1: MOUSEPOINTER
Il REM sestscnnsscssctscnsnnnes
2 REM =« MOUSEPOINTER

3 REM -« BY KEVIN GARBELMAN
4 REM ~« COPYRIGHT (C) 1987
5
6
7

REM « BY MICROSPARC. INC.

REM =~ CONCORD, MA 01742 .

REM “cctcconcscnsssncssnnncs

SET UP MOUSE
PRINT A SCREEN

GET A READING

ACT ON READING

16 GOSUB 500: REM
20 GOSUB 250: REM
30 GOSUB 70: REM
40 GOSUB 400: REM
5@ GOTO 20

6@ REM MOUSE ROUTINE

70 OL = 160:0D = 2039

80 PRINT CHRS (4);"IN#4"

90 VTAB 1: HTAB 48: INPUT "" MX, MY MB
160 PRINT CHRS (4):"INKD"

110 MY = INT (MY / 6) + 1

120 MX = INT (MX 7/ 4) + 1

130 IF MY > 24 THEN MY = 24

140 IF MX > 40 THEN MX = 40

150 IF MB = 2 ORMB = - 2 THEN FOR I = 1 TO
5:DU = PEEK (49200): NEXT : GOTO 220

160 POKE OD,OL

170 PK = 128 « MY + MX - (984 + INT ((MY - 1
) / 8)) + 895

180 OL = PEEK (PK)

196 0D = PK

200 POKE PK,170

210 GOTO 80

220 RETURN

230 REM END OF GET MOUSE

240 REM PRINT A SCREEN

250 HOME

260 VTAB 1: PRINT "MOUSEPOINTER"

270 VTAB 2: PRINT "BY KEVIN GARBELMAN": PRINT
"COPYRIGHT 1987 BY MICROSPARC, INC."

280 VTAB 6: HTAB 5: PRINT " OPTION i 1 *

299 VTAB 8: HTAB 5: PRINT " OPTION ¥ 2 “

300 VTAB 10: HTAB 5: PRINT " OPTION # 3

OPTION # 4"

310 REM <10SP
ACES>

320 VTAB 18: HTAB 4: PRINT "INSTRUCTIONS:"

330 VTAB 19: HTAB 4: PRINT "MOVE THE MOUSE T
O POSITION THE"

340 VTAB 20: HTAB 4: PRINT "CURSOR OVER AN O
PTION AND PRESS"

350 VTAB 21: HTAB 4: PRINT "THE MOUSE BUTTON
. THE 'FINISHED'"

360 VTAB 22: HTAB 4: PRINT "OPTION BELOW WIL
L END THE PROGRAM."

370 VTAB 24: HTAB 5: PRINT "FINISHED":

380 RETURN

390 REM DEAL WITH READING:

400 HOME : VTAB 12: HTAB 1: PRINT " NO OPTIO
N CHOSEN"

410 IF MY = 6 THEN VTAB 12: PRINT " YOU CHO
SE OPTION # 1"

420 IF MY = 8 THEN VTAB 12: PRINT " YOU CHO
SE OPTION # 2"

430 1IF MY = 10 AND MX < 20 THEN VTAB 12: PRINT
" YOU CHOSE OPTION # 3"

440 IF MY = 10 AND MX > 19 THEN VTAB 12: PRINT
"YOU CHOSE OPTION # 4"

450 IF MY = 24 THEN HOME : VTAB 12: PRINT "
GOODBYE": END

460 VTAB 18: HTAB 5: PRINT "PUSH THE BUTTON
TO RETURN'

470 GOsSuB 70

480 RETURN

490 REM #4sessess MOUSE SET UP osesenene

500 PRINT CHRS (4):"PR#4": PRINT CHRS (1)

510 PRINT CHRS (4);"PRiD"

520 RETURN

END OF LISTING 1

KEY PERFECT 5.0

RUN ON
MOUSEPOINTER
CODE-5.0 LINE# - LINEW CODE-4.0
DC8D2A19 1 - 30 6CF6
5F31908E 40 - 130 4559
A52619A9 140 - 230 5012
CF85BBB7 240 - 330 714F
892C99F6 340 - 430 93C4
FAB2F81D 440 - 520 59F8
60230332 = PROGRAM TOTAL = 052E

LISTING 2: JOYPOINTER

REM stsssstsssnssnsntsssnsnns
2 REM « JOYPOINTER =
3 REM + BY KEVIN GARBELMAN -
4 REM + COPYRIGHT (C) 1987 .
5 REM +« BY MICROSPARC, INC. -
6 REM « CONCORD, MA 01742 .
7 REM cscvnssvsnrtnantsnensnes

10 GOSUB 250: REM
20 GOSUB 68: REM
30 GOSUB 390: REM
40 GOTO 10

50 REM JOYSTICK ROUTINE
60 OL = 160:0D = 2039

PRINT A SCREEN
GET A READING
ACT ON READING

70 MX
80 MY
90 MB

100
110
120
130
140
150
160

170
180

190
2900
210
220
230
240
250
260
270

280
290
300

310
320

330
340
350
360
370
380
390
400
410
420
430
440
450

460
470

PDL (0)

POL (1)

PEEK (49249)
INT (MX 7 6)
INT (MY / 10)

24 THEN MY

40 THEN MX

1 THEN MX = 1

1 THEN MY = 1

127 THEN FOR I =

: GOTO 230

MX =

MY =

IF MY >
IF MX >
IF MX <
IF MY <
IF MB >

24
490

1 TO 10:DU = PEEK

PK =
) 7/ 8)) + 895
OL = PEEK (PK)

oD = PK

POKE PK, 170

GOTO 70

RETURN

REM

HOME

VTAB 1: PRINT "JOYPOINTER"

VTAB 2: PRINT "BY KEVIN GARBELMAN":

"COPYRIGHT 1987 BY MICROSPARC, INC."

VTAB 6: HTAB 5: PRINT " OPTION # 1 ~

VTAB 8: HTAB 5: PRINT " OPTION # 2 ~

VTAB 10: HTAB 5: PRINT " OPTION ¥ 3
OPTION # 4"

VTAB 18: HTAB 4: PRINT

VTAB 19: HTAB 4: PRINT

K TO POSITION THE"

VTAB 20: HTAB 4: PRINT

PTION AND PRESS"

VTAB 21: HTAB 4: PRINT

THE 'FINISHED'"

VTAB 22: HTAB 4: PRINT

L END THE PROGRAM."

VTAB 24: HTAB 5: PRINT

RETURN

REM DEAL WITH

HOME : VTAB 12:

N CHOSEN"

IF MY = 6 THEN

SE OPTION # 1"

IF MY = 8 THEN

SE OPTION # 2"

IF MY = 10 AND MX < 20 THEN VTAB 12: PRINT

" YOU CHOSE OPTION ¥ 3"

IF MY = 10 AND MX > 21 THEN VTAB 12: PRINT

" YOU CHOSE OPTION # 4"

VTAB 14: HTAB 5: PRINT "HIT THE BUTTON T

O RETURN."

IF MY = 24 THEN HOME

GOODBYE": END

GOSUB 60

RETURN

(984 + INT ((MY -1

PRINT A SCREEN

PRINT

"INSTRUCTIONS: "
"MOVE THE JOYSTIC

“"CURSOR OVER AN O
"THE BUTTON.
“"OPTION BELOW WIL
“FINISHED" ;

READING:

HTAB 1: PRINT " NO OPTIO

VTAB 12: PRINT " YOU CHO

VTAB 12: PRINT " YOU CHO

: VTAB 12: PRINT "

END OF LISTING 2

KEY PERFECT 5.0

RUN ON
JOYPOINTER
CODE-5.0 LINE# - LINEHW CODE-4.0
02B84ABS 1 - 30 684E
0884ADES 40 - 130 38D1
225E86F3 140 - 230 48B4
2034D65C 240 - 330 7DBD
52BA8A76 340 - 438 92EC
EDEE93B5 440 - 470 23F8
88367BBD = PROGRAM TOTAL = Q4AE

