Apple Utilities

ProDOS DOS 3.3

0O o)

by Steven Wong
1427 67th St.
Brooklyn, NY 1219

e have all seen shapes in game
Wprograms that we would like to use

in our own programs. Until now, the
only way to accomplish this was to re-create
them. Depending on the complexity of the
shapes, re-creation could take hours.
LIFT.OFF is a program that will perform this
tedious task for you quite easily.

LIFT.OFF is a graphics utility which
enables you to convert anything on the Hi-Res
screen into a usable vector shape. The entire
process usually takes a couple of minutes from
start to finish.

Using LIFT OFF
Upon running this program, a short menu
will be displayed. There are four options
available:

1. LOAD SCREEN — This is used to load a
Hi-Res screen from disk. The program will
ask you for the file name. If you press the
RETURN key without typing a file name,
the disk Catalog will be displayed. After
the screen has been loaded into memory,
you will immediately be sent to the editor
mode.

2. EDITOR — This command places you in
the editor mode. In this mode, you will be
able to edit or create a shape. Use the fa-
miliar I, J, K, and M keys to move the
blinking cursor around the screen.

Pressing A will plot a point and pressing
S will erase a point. Pressing W locks plot-
ting and pressing E locks erasing. Press Q
to unlock either one. Pressing the ESC key

AP, JFF

will switch between full and mixed screen
graphics. You can return to the menu at any
time by pressing the “at” (@) key.

Note: When you enter the editor mode, the
CLEAR HIBIT routine will be CALLed.
While this routine does not physically af-
fect the Hi-Res screen, it does alter its
colors.

pm———esm =L ==]
“This option permits you to
isolate the part of the Hi-Res
screen to be converted.”

3. BOX IN SHAPE — this option permits you

to isolate the part of the Hi-Res screen to
be converted into a shape. If you are not
familiar with the layout of the Hi-Res
screen, the simple chart (Figure 1) should
be of help.

There are four values which can be chang-
ed: the top, bottom, left, and right. To
change the valuc of a certain edge, press
the space bar. When the flashing cursor
reaches the name of the edge you wish to
modify, press the RETURN key and then
make the change.

You can keep changing the values until you
are satisfied. The Hi-Res rectangle will be
altered upon the entry of cach new value.

Once you are satisfied, press the CON-
TROL key while typing S (CTRL-S) t©
start the converting process. You will be
asked if you would like a negative shape.
Entering ‘“‘no” will convert the shape ex-
actly the way it is, while entering “yes™ will
convert the shape into a vector shape con-
taining its opposite colors.

At this point, the machine language pro-
gram takes over and does the actual con-
version. Within a second or two (the

advantage of machine language), you will
see the result of your efforts.

After you are done admiring your creation,
press <RETURN>. You will be asked
if you want to save the shape. If you are
satisfied with the shape, enter “yes” and
then the name you wish to save it under.
Once the shape is saved, the disk Catalog
will be displayed before you are sent back
to the menu.

Note: The CLEAR HIBIT routine is also
CALLed in the “box in shape” mode.

4. QUIT — This option allows you to exit
gracefully from the program.

Rules
There are a few rules you should be aware
of when using LIFT OFF:

1. The difference between the top and bottom
values must be at least two.

2. The difference between the left and right
values must be at least three.

3. The top value cannot be greater than the
bottom value.

4. The left value cannot be greater than the
right value.

5. You cannot convert a shape which is greater
than 8000 pixels in size. The formula
(bottom-top) * (right-left) will compute
the number of pixels in the shape.

Don’t worry too much about breaking these
rules. The program detects all transgressions
and will not allow you to proceed to the con-
version stage until you have rectified them.
You can always return to the menu by press-
ing the ‘@’ key.

IMPORTANT: The shape to be converted
must be set flush against each side of the Hi-
Res rectangle. It should not touch or exceed
any of these boundaries.

M

m

FIGURE 1

FIGURE 2

Typing in the Program

LIFT OFF is composed of two parts, a
BASIC program and a machine language pro-
gram, both of which are relatively short. The
program requires at least 48K of RAM and
Applesoft in ROM or in a RAM card.

First, type in the BASIC program (Listing
1) and save it under the name LIFT.OFF.

Next, enter in the machine language pro-
gram. (See Listing 2, the source listing.) If
you do not own an assembler or if you do not
understand assembly language, refer to “A
Welcome to New Nibble Readers” for instruc-
tions on entering machine code.

Once you have entered the program, save
it by typing BSAVE LIFT.OFF.ML,
AS$1IEDC,LSDF.

Capturing A Shape: A Case Study
I will show you how simple the procedure
of capturing a shape really is.

1. Type NEW < RETURN > to clear mem-
ory, and type in the short program from
Listing 3 named “APPLE.CREATOR.’

2. RUN it. You should see a green apple ap-
pear in the middle of the screen.

3. RUN LIFT.OFF

4. When the menu options appear, enter 3
<RETURN > for option 3.

5. You should see the apple surrounded by a
large rectangle. (See Figure 2.) Press

<RETURN >, and the names of the rec-
tangle sides along with their values will be
displayed.

6. Start to enclose the apple shape, moving
the BOTTOM side first. Press the space
bar until it is aligned with the name of the
side you are modifying; in this case, BOT-
TOM. Then press <RETURN > and en-
ter in 97 <RETURN> when the
“ENTER?" question appears. You should
see the Hi-Res rectangle re-justifying itself.

7. Now move the LEFT side. Press

<RETURN> and follow the same pro-
cedure outlined in step 6, but apply it to
the LEFT side. Enter 122 <RETURN >
for the LEFT value.

8. At this point, your screen should look like
Figure 3. (If it does not, you have made
a mistake somewhere along the way. I sug-
gest you restart from the beginning.)

9. Now move the TOP side. Again follow the
procedure outlined in step 6. Enter 61
<RETURN > for the TOP value.

10. Finally, move the RIGHT side. Enter 154
<RETURN > for the RIGHT value.

11. Your screen should look like Figure 4.
Notice that the sides of the rectangle are
completely flush against the apple shape
without touching it.

12. Press < RETURN > . The correct values
for each side are:

FIGURE 3

FIGURE 4

TOP = 061
BOTTOM = 097
LEFT = 122
RIGHT =154

If any of your values are different, cor-
rect them to match the ones above.

13. Now press CTRL-S and type NO when
the “NEGATIVE SHAPE?" question

appears.

14. Within a few seconds, the captured shape
should appear.

15. Press <RETURN> and enter YES
when the question ““SAVE SHAPE?" ap-
pears. Then enter APPLE as the file
name.

16. After the disk drive stops, press <RE-
SET > and typc NEW <RETURN>.

17. Now, enter the short program from
Listing 4 named “SHAPE.DEMO™ and
RUN it.

18. If you have correctly followed all the in-
structions outlined, you should see four
colorful apples and an interesting
animated demonstration.

I hope you now realize how simple captur-
ing shapes really is. Take some time to learn
the “ins and outs™ of this program — and don't
be afraid to experiment!

How LIFT OFF Works

The Applesoft Program LIFTOFF

Lines 110-160 contain various short
subroutines. The subroutine at line 110 may
be of interest to you. It is a simple method 1
have devised to simulate the Print Using func-
tion. This useful function is available in the
BASICs of many computers, but unfortunately,
is not available in Applesoft.

Lines 180-240 contain the input subroutine.
I, like many programmers, hate to use the IN-
PUT statement, but I will normally write a
small INPUT routine when it is necessary for
the users of my programs to enter any substan-
tial amount of information.

Basically, this subroutine builds the string
I$ with the characters obtained via the GET
function. Special characters such as back-
spaces are checked for and handled according-
ly. When a < RETURN > is detected, this
subroutine returns back to its caller. At that
point, I$ will contain the string obtained from
the user, J§ will contain string IS's first
character, and the variable I will contain the
value of I$, if it is numerical.

Lines 250-390 contain the editor routine.
Lines 250-280 set the Hi-Res and text screens
and CALL the CLEAR HIBIT routine. All the
editing commands are checked for and pro-
cessed in lines 290-390.

“...notice the heavy use of
Boolean expressions.”

As you scan through this section, you will
notice the heavy use of Boolean expressions.
This was done mainly to decrease the size of
the program. While I did have 64K of RAM
to work with, my goal was to write this pro-
gram in less than 4K. This would not have
been possible if the program had been writ-
ten with the scores of IF... THEN statements
that were replaced by the Boolean expressions.

Lines 400-450 contain the menu. This sec-
tion of the program displays the program title,
author’s name and the copyright notice. The
four options available in the menu are printed
in line 430. Lines 440-450 wait for the user’s
choice and process it accordingly.

Line 460 allows you to quit the program.

Lines 470-500 load the screen and get the
file name from the user. If the user enters no
name, then the disk Catalog is displayed.

Lines 510-730 contain the “box in shape”
routine. The variables used by this part of the
program are initialized at line 510. The
CLEAR HIBIT routine is CALLed. Lines
520-550 may be the most complex part of the
program. (The algorithm alone took me over
a day to write.) It is a very small routine which
simulates the nonexistent Applesoft command,
XHPLOT. XHPLOT, if there were such a
command in Applesoft, would operate exact-
ly like HPLOT, except that it would provide
a nondestructive way of line plotting. (HPLOT
destroys everything that it plots over.)
[E——tes e s = ==]

“It is a very small routine
which simulates the non-
existent Applesoft command,
XHPLOT.?

———————————— "

By properly manipulating the SCALE, ROT
and XDRAW commands, this routine has
given me a satisfactory substitute for an
XHPLOT command. And while this routine
is in no way complete, it does meet the needs
of this program.

Line 560 blinks the Hi-Res rectangle. Lines
630-640 contain the routine which allows you
to manipulate valucs of the Hi-Res rectangle.
The input data is processed and checked for
errors in lines 650-730.

Lines 740-780 contain the conversion
routine. Line 740 checks the size of the shape.
If the shape is too large, it informs you and
loops back to the “box in shape™ routine.
Lines 760-770 POKE in the values of each side
of the Hi-Res rectangle (so that the machine
language program can find the shape).

The captured shape directory is set up in
line 780. Line 780 also CALLs the machine
language program which actually does the
conversion. Line 790 draws the captured shape
onto Hi-Res page 2. The variable J holds the
length of the captured shape (used later to save
the captured shape).

Lines 800-860 save the captured shape. This
routine saves the captured shape onto disk at
address $6000 (24576 dec.). After the shape
1s saved, the relevant information regarding the
shape will be displayed.

Lines 870-920 perform initialization. Line
860 loads the machine language program from
disk into memory. Line 880 POKEs in a Shape
Table which consists of a single dot and the
short machine language routine CLEAR
HIBIT. This routine strips the high bits out
of each byte in the address range of
$2000-$3FFF (8192-16383 dec.). The
variables and strings used by LIFT.OFF are
initialized at lines 890-910.

The Machine Language Program

Essentially, the machine language program
LIFT'OFFEML scans a rectangular area
(previously defined by the user) on the Hi-Res
screen and converts the data it finds into a Vec-
tor Shape Table. (See pp. 92-99 of the BASIC
Programming Manual. or pp. 150-166 of the
Applesoft BASIC Programmer’s Reference
Manual for more information regarding Vector
Shape Tables.)

Lines 030-040 initialize the pointers used
by this program.

Lines 044-062 scan the screen from left to
right and call the FIND routine to check the
pixel at HLOCVLOC. Depending on the con-
dition of the pixel, a vector value of 5 or 1
will be placed into memory. (See Figure 5.)
HLOC is incremented and checked to see if
it has reached the right side of the Hi-Res
rectangle.

Lines 066-085 perform functions similar to
those performed by lines 44-62, except: they
scan the screen from right to left, the vector
codes used are 7 and 3 instead of 5 and 1, and
HLOC is decremented and checked to deter-
mine whether it has reached the left side of
the Hi-Res rectangle.

Lines 089-105 contain the FIND routine
which checks the status (on/off) of the pixel

at HLOCVLOC (a sort of Hi-Res SCRN func-
tion). First, the value of HLOC is divided by
7 to locate the screen byte. The remainder is
used to locate the bit within the byte. (Pixels
are actually bits in a byte.)

The accumulator is then loaded with the
value of the screen byte and logically ANDed
to filter out the bits it is not presently testing.
If the accumulator contains 0, then the pixel
at HLOCVLOC is off. If it contains any oth-
er value, then the pixel is on.

Lines 109-115 contain a routine that, after
each screen line is completed, places a vec-
tor code of 6 or 2 into memory — again,
depending on the condition of the pixel at
HLOCVLOC.

Lines 119-124 contain the PU1 routine. This
routine stores the vector codes into memory
starting at $4000 (16384 dec.).

Lines 128-132 contain a routine that in-
crements the variable VLOC by one and
checks to see if it has reached the bottom of
the Hi-Res rectangle. If it has not, then it
CALLs the Monitor's HPOSN routine and
loops back to scan another screen line.

HPOSN, among other things, calculates the
Hi-Res screen’s vertical base addresses. The
addresses can be found at $26,$27 (38,39 dec.).
When the bottom of the Hi-Res rectangle is
reached, the scanning process is done and the
conversion of the vector codes into Vector
Shape Table data begins.

Figure 6 shows how the program scans the
Hi-Res screen and stores proper vector codes
into memory.

Lines 136-159 contain a routine that takes
the vector codes from memory and converts
them into a Vector Shape Table. Two vector
codes arc combined to form a single Vector

VECTOR | CODE | FUNCTION

A 0 MOVE UP, NO PLOT

E 1 MOVE RIGHT, NO PLOT

v 2 MOVE DOWN, NO PLOT

-« 3 MOVE LEFT, NO PLOT

p- 4 | MOVE UP, PLOT

ep 5 MOVE RIGHT, PLOT

; 6 MOVE DOWN, PLOT

<o 7 MOVE LEFT, PLOT

FIGURE 5
‘— start vectors codes
—] - - e = MG 1D
- ®] e o == Q7B T8
—|® @ -~ - 5,1 6
-— @ ®| 7 - -~ = 6:3.8484'7
— 0000 @ -~ -~ - 5515156
- | @® Q| | « ~ ~ = (63,3.37
— | @® @ - - - (o e EEy
Lﬁnish
FIGURE 6
Vector codes: ¢ 23 ale;
=9 5+1*8 13

Vector shape
table values:

9,13,26,etc.,0

—
L&

shape table
always ends
with zero

FIGURE 7

Shape Table value. This value is found by add-
ing the first vector code to the product of the
second vector code and 8. (See Figure 7.) The
Vector Shape Table values are stored begin-
ning at $6004 (24580 dec.).

This process continues until a Vector Shape
Table value of zero is computed. (The zero
value will also be stored in memory 1o signal
the end of the Vector Shape Table.) At that
point, the conversion is over and control
returns to the BASIC program.

A Final Thought

If you would like to compile some of your
captured shapes into a Shape Table, I suggest
you obtain a copy of Nibble Vol. 2/No. 5.
There you will find a program called HI-RES
SHAPE COMBINER by Chris Carroll which
performs this task for you. Otherwise, you
might have to do it the hard way, by hand.

180
11e
120
138
148
158
168
178
188

198
200

218
220
238
2498
258
260

278

288
298
3ee

310

328
338
348
358

348

378
3se
398
400
410
428

438

448

as8
448
478

480
490

560
S10

520
538

548

LISTING 1 — LIFT.OFF

REM ¥4A%XEEFXRRXRRRIRRRRARRER
REM » LIFT.OFF *
REM = BY STEVEN WONG *
REM = *
REM * COPYRIGHT (C) 1984 =x
REM * BY MICROSPARC, INC =
REM ® LINCOLN, MA., 81773 =
REM #XXXXERAEENRRERRERARRER

LOMEM: 32768: TEXT
PRINT RIGHTS ("88" +

: HOME : GOTO 878
STR$ (J),3);: RETURN

POKE - 163084,8: POKE - 16297,8: RETURN

HOME : PRINT D$"CATALOG®": PRINT : PRINT : GOTO
158

CALL BL: HTAB 1: PRINT *DISK ERROR W* PEEK (222
):

Pl’?lNT a2 . PRESS A KEY": CALL BL

POKE KR,8: WAIT KB,128: POKE KR,8: RETURN
1 = FRE (8):I% = "":K = POS (8) ¢+ 1

GET A$: IF A% (S$ AND A$ < > RS AND A$ ¢ > B
% THEN 188

PRINT As$;: IF A% = R$ THEN 248

1 = PEEK (SP) - PEEK (SP): IF As$ (> B$ THEN
1$ = I$ + As$: GOTO 238

IF LEN (I$) ¢ 2 THEN HTAB K: PRINT St;: HTAB
K: GOTO 178

PRINT SB;:I1¢ = LEFTs (I$, LEN (I%) - 1): GOTO
180

IF LEN C(I$) < 16 THEN 188

I = VAL (I$):Js = LEFTS (I%,1): RETURN

POKE MS,8:K = 8:MC = 8: CALL 774: HOME : VTAB 2
2: FOR 1 = 1 TO 48: PRINT "=";: NEXT

VUTAB 23: PRINT Mas;: VTAB 23:
Mis$: POKE 58,63: VTAB 24
PRINT "A=ON S=0FF 1-J-K-M @=MENU ESC=SCREE"
j: POKE 2839,14: SCALE= 1: ROT= @: GOSUB 1208: NORMAL

HTAB 3: FLASH : PRINT

UTAB 21: HTAB 14: PRINT *X=";:J = X: GOSUB 118:
HTAB 23: PRINT "Y=";:J = Y: GOSUB 118

1 = PEEK (KB): XDRAW 1 AT X,Y:I =1 - 128: XDRAW
1: IF I < ® THEN 298

POKE KR,8: IF I ¢ > 49 AND I ¢ > 81 AND I < >
87 THEN 358

UTAB 23: HTAB |: PRINT M4s;: UTAB 23: FLASH : IF
I = 81 THEN MC = 8: HTAB 3: PRINT Mis: GOTO 348

IF 1 = 87 THEN MC = 1: HTAB 1S: PRINT M2¢: GOTO

348

IF 1 = 69 THEN MC = 2: HTAB 38: PRINT M3%;
NORMAL : GOTO 388

Z = PEEK (SP) - PEEK (SP):X = X ¢ (I = 75) - (

I =74): X =X ¢+
Y=Y+ (1 =727)
Y) 191)) = 192s
MS - K,®

IF NOT MC THEN IF I = 45 OR | = 83 THEN HCOLOR=
3 #* (I = 65): HPLOT X,Y

IF MC THEN HCOLOR= 3 * (MC = 1)>3: HPLOT X,Y

IF 1 ¢ > &4 THEN 280

1 = FRE (8): POKE 216,8: POKE 238,32: POKE 233,

3: TEXT : HOME : FOR J = 1 TO 3 ZTEP 2: UTAB J
FOR I = 1 TO 48: PRINT *-";: NEXT I,J: PRINT *

((X < 8) = (X > 279)) = 288
= (1 = 73)3Y =Y + (Y < 0) - (
IF I = 27 THEN K = NOT (K): POKE

CUPYRIGHT (C) 1984 BY MICRUSPARC, INC.*
INVERSE : UTAB 2: PRINT SPC(7)*LIFT OFF BY
STEVEN WONG* SPC(7): NORMAL

UTAB 18: PRINT (1) LOAD SCREEN®": PRINT *(2) ED
ITOR": PRINT *(3) BOX IN SHAPE®: PRINT *(4) QuUI
M

CALL BL: UTAB 1S5: CALL BH: PRINT : HTAB S: PRINT
*YOUR CHOICE --> ";: GOSUB 178: IF NOT I OR I >
4 THEN 448

ON 1 GOTO 470,258,518

HOME : END

UTAB 28: PRINT "FILE NAME? *;: GOSUB 178: IF Is
= ** THEN GOSUB 138: GOTO 488

ONERR GOTO 508

PRINT D$*BLOAD *1$" ,A$2808": POKE 216,8: GOTO 2

58

UTAB 28: GOSUB 148: GOTO 448

CALL 774:A = 0:B = 8:C = 279:D = 191: GOSUB 120
1L2 = 16308:L = 8: GOTO Sé8

J=C - A: ROT= 8: IF C ¢ 256 THEN FOR Z = 1 TO
188: NEXT

IF J > 254 THEN SCALE= C - 255 + 1: XDRAW | AT
255,B: XDRAW 1 AT 235,D:J = 254 - A

SCALE= J + |: XDRAW 1 AT A,B: XDRAW 1 AT A,D: ROT=
16: SCALE= D - B - 1|

558
568
578

588

598

488
418
428
638

648

658
440
678
688
698
7008
710
728
730

748

758

768
770

780

798
888
818
820
838
840
858
848
87e¢
880

8%e
k4 1]
910

920

XDRAW 1 AT A,B + 1: XDRAW 1| AT C,B + 1: ROT= 8:

RETURN

POKE FS,8: FOR K = 1 TO 7:2 = PEEK (SP): GOSUB
528: NEXT : GOSUB 168: POKE MS,8

HOME : UTAB 21: PRINT * TOP = ";:J = B: GOSUB
118: PRINT : PRINT * BOTTOM = *;:J = D: GOSUB 1
10

PRINT : PRINT * LEFT = *;:J = A: GOSUB 118: PRINT
|9PRINT " RIGHT = *j:J = C: GOSUB 118: POKE L2

é

’

GOSUB 168:K = PEEK (KB): IF K = 32 THEN L = (L

4 1) % (L ¢ 3):L1 = 1430 + L * 128: POKE L1,96
t POKE L2,140:L2 = L1

IF K = 44 THEN GOSUB 528: GOTO 468

IF K = 19 THEN 748

IF K ¢ > 13 THEN 598

POKE L2,168: UTAB 21 + L: HTAB 18: CALL BL: PRINT
"ENTER? ";: GOSUB 178: IF J$ = " " OR I$ = ** THEN
578

HOME : GOSUB 528: ON L + 1 GOTO 450,670,498,718
IFIKBOR I >189 ORI + 2)>D THEN 738
B = 1: GOTO Sée

IF1 ¢20R 1 >191 ORI - 2 ¢ B THEN 738
D = I: GOTO 560

IF 1 <CB ORI >276 0R 1 +# 3 > C THEN 738
A = 1: GOTO 568

IF I < 30R 1 » 27?2 OR1 - 3 < (A) THEN 738
C = 1: GOTO 540

HOME : UTAB 22: PRINT "ERROR';: GOSUB 158: GOSUB
S20: GOTO S76

HOME : UTAB 22: IR (D - B) % (C - A) > 8888 THEN
PRINT “SHAPE IS TOO LARGE";: GOSUB 158: GOTO 5
PRINT *NEGATIVE SHAPE? *;: GOSUB 178: POKE 239,

4 % (J$ = "Y"): GOSUB S28: POKE 249,B: POKE 258

,D: POKE 237,8B

A=A+ 1:J= INT (A/ 254):] = A - J % 256: POKE
251,1: POKE 252,J: POKE 235,1: POKE 236,J
C=C=-1:J= INT (C/ 256):1 =C - J % 25&: POKE
253,1: POKE 254,J

HGR2 : POKE 230,96: CALL 62458: POKE 24376,1: POKE

24578,4: POKE 230,32: CALL 7988: POKE 233,94: SCALE=
1: ROT= @

HOME : HGR2 : XDRAW 1| AT A,B + 1: GOSUB 148:J =
PEEK (B8183) + PEEK (8184) * 256 - 24575

TEXT : HOME : VUTAE 8: PRINT "SAVE SHAPE? ";: GOSUB
178: IF J$ ¢ > *"Y" THEN 400

VTAB 11: CALL BH: PRINT *NAME? ";: GOSUB 178: IF

Is = ** THEN 808

ONERR GOTO 848

PRINT D$*"BSAVE SHAPE."1%$" ,A24576,L"J: HOME

VTAB 8: PRINT “NAME: SHAPE."1%: UTAB 11: PRINT
"ADDRESS SAVED: 24574*

VUTAB 14: PRINT "LENGTH OF SHAPE:

J BYTES": VTAB

17: GOSUB 156: PRINT : GOSUB 138: GOTO 488

VUTAB 14: GOSUB 148: GOTO 808

D$ = CHRS (4): IF PEEK (7988) ¢ > 149 OR PEEK
(80088> ¢ > 208 THEN PRINT D$*BLOAD LIFT.OFF.M
L

POKE 232,0: IF PEEK (768) < > 1 OR PEEK (798
> ¢ > 288 THEN FOR I = 748 TO 798: READ J: POKE

1,J: NEXT

R$ = CHRS (13):B$% = CHR® (8):S$ = CHRs (32):X
= 1391 = 95:BH = - 958:BL = - 198

KB = =~ 16384:KR = - 16368:SP = - 14336:FS = -
16302:M8 = - 16301:SP = - 16336

M1$ = "REGULAR" :M28 = *LOCKS PLOT":M3$ = *LOCKS
ERASE" :M4$ = "(Q=" + Mi$ + * W=" + M2$ + *

=" 4+ M3¢: GOTO 4ee

DATA 1,8,4,0,29,08,169,8,133,6,168,169,32,133,7,
178,177,6,41,127,145,6,200,268,247,230,7,202,28
8,242,946

KEY PERFECT 4.8
RUN ON
LIFT.OFF
CODE LINEW — LINEMW
saF3 20 - 118 CHECK CODE 3.9
B834E 128 - 218
B4SE 228 - 310
ADB4 320 - 410 ON: LIFT.OFF
9C9S 428 - S1e TYPE: A
BC33 S5z28 - 618
SE9C é20 - 710 LENGTH: @B8C
EB4F 728 - 818 CHECKSUM: FC
E®72 828 - 710
38FC 920 - 928
TOTAL PROGRAM CHECK IS : eCAag

LISTING 3 — APPLE.CREATOR

LISTING 4 — SHAPE.DEMO

i1 REM HEEEREREEREREREREREE N 18 REM % 363 36 3 3 3 3 3 I I I I KR XHH
2 REM * APPLE.CREATOR * 11 REM * SHAPE .DEMO *
3 REM * BY STEVEN WONG * 12 REM * BY STEVEN WONG *
4 REM ¥ COPYRIGHT (C> 1984 =x 13 REM ¥ COPYRIGHT (C) 1984 =*
S REM * BY MICROSPARC, INC. * 14 REM * BY MICROSPARC, INC =
é REM * LINCOLN, MA. 81773 = 15 REM *# LINCOLN, MA. 081773 =
7 REM HHRHXHRHEEEHEHEEEERERRXNN 16 REM 29696 36 96 3 36 % 9 3 9 9 36 3 9 3 3 % 9 X 2 %
18 REM APPLE.CREATOR 20 HOME : PRINT CHR$ (4)"BLOAD
26 HOME : HGR : HCOLOR= 1 SHAPE .APPLE ,A24576"
30 FOR 1 = 123 TO 153 STEP 2: READ 38 HGR2Z : SCALE= 1: ROT= 8: POKE
J,K 232,8: POKE 233,%946: GOTO S
49 HPLOT I,J TO I,K: NEXT 40 XDRAW 1| AT X,118: XDRAW 1 AT
’ ’
58 FOR I = 139 TO 145 STEP 2: READ 245 — X,110: RETURN
J,K 58 HCOLOR= 7: FOR J = 1 TO 2: POKE
68 HPLOT I,J TO I,K: NEXT 230,32 * J: CALL 424580
78 DATA 82,87,77,92,75,94,74,95, 48 XDRAW 1 AT 51,44: XDRAW 1 AT
73,96,73,96,74,95,75,94,75,9 188,446: DRAW 1 AT 149,44
’ ’ ’ 3 ’
4,75,95 70 DRAW 1 AT 198,44:X = 2 + 4 *
880 DATA 74,96,73,96,73,95,74,93, (J = 1): GOSUB 40: NEXT
76,91,81,88,68,73,65,78,64,6 880 X = é: FOR I =1 TO 38:J = NOT
?,62,66 J: POKE 238,44 - 32 * J
?8 VTAB 21: PRINT "% COPYRIGHT 98 POKE 49236 + J,8:X = X - 4: GOSUB
1984 BY MICROSPARC, INC. **" 48:X = X + 8: GOSUB 48: NEXT
1686 FOR I = 1 TO 3888: NEXT : TEXT
LISTING 2 — LIFT.OFF.ML 1F42: 26 &C IF 84 JSR OVER
1ASM ; 1F45S: 4C F7 |E 85 JMP GORIGHT
1 EREEAEEREEEERA AR AR A SRR ERERRRRNR 84 A s ot S
2 * 87 # Status of pixel at HLOC,VLOC
3 * Lift Off ML * 88 T o e o e it e S S
4 * By Steven Wong ¥ 1Fa8: A8 88 89 FIND LDY #s$68
S .) o84 : 1F4Aa: A5 EB 98 LDA HLOC
? ¢ S L | o
8 * Lincoln, MA. 01773 * 1F4E: Fo @S 22 BEQ F1
5 2 % :Eggx ?g 24 Za LDY #$24
. : 4 cLc
:? : Assembler: MERLIN : :;gaz 49 84 95 ADC H$84
S: C9 @87 96 Fi CMP H#$87
:g EEBEEEEAEEERAREEREREERRERERRERR 1F57: 90 85 97 BCC F2
1F59: E9 87 98 SBC Hs@7
14 ORG; ‘SLEDC 1FSB: C8 99 INY
" 1FSC: DO F7 188 BNE F1
e e = 288 1FSE: AA 181 F2 Tax
18 HLOC = $EB 1FSF: Bl 26 182 LDA (HBASL),Y
19 vLoC = $ED 1F61: 3D 65 IF 183 AND MASK,X
26 TEMP = SEE 1F64: &8 184 RTS
21 HINVFLG = $EF 1F65: 81 82 84 185 MASK HEX 818208488182848
22 TOP o SF9 1IF68: 88 18 20 48
Y T ——
2 = *
23 Eggm - ‘:g 187 * Store “MOVE DOWN’ vector code
188 Mo
32 :Lg:: . ::211 1F6C: 20 48 IF 189 OVER JSR FIND
o :igF: Fo 84 118 BEQ 01
g : 1: AY 86 111 LDA W#$84
gg : Initialize the pointers 1F73: D8 @2 112 BNE 02
1F75: A9 82 113 o1 LDA #$82
1IEDC: A9 88 38 LDA #s$88
\EDE: 8D 88 iF 31 STA PUSH+1 1F77: 28 70 IF 114 02 JSR PUL
1EEls BS 88 o Sth. BUFF 1F7A: 4C 8B IF 115 JMP TEST
1EE3: A9 48 33 LDA #sa8 e S
1EES: 8D 81 IF 34 STA PUSH+2 117 % Store vector codes
1EE8: 85 89 35 STA BUFF+1 e e e e i
{EEA: A9 84 3% LDA #8084 IF7D: 45 EF 119 PUL EOR HINVFLG
\EEC: 8D A7 IF 37 STA S2+1 1F7F: 8D 88 48 128 PUSH STA s$4880
\EEF: A9 48 38 LDA #$&8 1F82: EE 88 1F 121 INC PUSH+|
IEF1: 8D A8 1IF 39 STA 5242 1F85: Do 83 122 BNE P1
\EF4: 28 8B IF 48 JSR TEST 1F87: EE 81 IF 123 INC PUSH+2
4T = 1F8A: &8 124 P1 RTS
42 » Scan left to right 12T Moo e s S
43 126 * Finish?
1IEF7: 28 48 IF 44 GORIGHT JSR FIND 127 = =
1EFA: F8 04 45 BEQ R3 1F8B: Eé ED 128 TEST INC vLOC
\EFC: A9 85 46 LDA #$85S 1F8D: AS ED 129 LDA vLOC
1EFE: D@ 82 47 BNE R4 1F8F: CS FA 130 CMP BOTTOM
1F88: AP 81 48 R3 LDA #$01 1F91: B8 @3 131 BCS COMPILE
1F82: 28 7D 1F 49 R4 JSR PU1 1F93: 4C 11 F4 132 JMP HPOSN
IF85: 18 58 cLc 133 =
1IF8é: AS EB 51 LDA HLOC 134 = Convert vector codes
IFB8: 49 81 52 ADC #1 135 *- =
1FBA: 85 EB 53 STA HLOC 1F96: 68 136 COMPILE PLA
1FBC: AA 54 Tax 1F97: 48 137 PLA
1F8D: AS EC 55 LDA HLOC+1 1F?8: A8 88 138 LDY #s8e0
IFBF: &9 88 54 ADC #8 1F9A: Bl 88 139 s1 LDA (BUFF),Y
IF11: 85 EC 57 STé HLOC+1 1F9C: 85 EE 140 STA TEMP
IF13: CS FE 58 CMP RIGHT+1 1F9E: C8 141 INY
IF15: D8 E® 59 BNE GORIGHT 1F9F: Bl @8 142 LDA (BUFF),Y
IF17: E4 FD 68 CPX RIGHT 1FAls 0A 143 ASL
1IF19: D8 DC 61 BNE GORIGHT 1FA2: 8A 144 ASL
IF1B: 28 4C 1F 62 JSR OVER 1FA3: 8A 145 ASL
&% Yo 1FA4: &5 EE 146 ADC TEMP
64 ®» Scan right to left 147 =
65 e 148 = Store vector shape table data
IF1IE: 20 48 1F 66 GBGOLEFT JSR FIND 149 - m——
1F21: F8 84 47 BEQ L1 1FAé: 8D 88 40 158 S2 STA %4668
1F23: A9 87 48 LDA #$87 1FA®: F8 BF 151 BEQ FINISH
1F25: D8 82 69 BNE L2 1FAB: EE A7 IF 152 INC S2+1
1F27: A9 83 76 L1 LDA #s$83 IFAE: De @3 153 BNE S3
1F29: 28 7D IF 71 L2 JSR PU1L 1FB@: EE A8 IF 154 INC S2+2
IF2C: 38 72 L3 SEC 1FB3: C8 155 s3 INY
1F2D: AS EB 73 LDA HLOC 1FB4: Dé E4 156 BNE SI
1F2F: E9 81 74 SBC #1 1FBé: E6 89 157 INC BUFF+1
1F31: 85 EB 75 STA HLOC 1FB8: Dé EB 158 BNE S1
1F33: aA 76 TAX 1FBA: 48 159 FINISH RTS
IF34: AS EC 77 LDA HLOC+1
IF34: E9 @88 78 SBC #e
1F38: 85 EC 79 STA HLOC+1 --End assembly--
{F3A: CS FC 88 CMP LEFT+{
1F3C: D@ E® 81 BNE GOLEFT 223 bytes
IF3E: E4 FB 82 CPX LEFT
1F468: D@ DC 83 BNE GOLEFT Errors: 8

