DRAWING HI-RES
CHARACTERS

The Graphics Workshop takes a short lime-
out from its exploration of block shapes
this month to consider a perennial problem
for graphics programmers: displaying text
on the Hi-Res screen. Using the combina-
tion Applesoft and machine language pro-
gram presented, you will be able to add
Hi-Res text horizontally, vertically and
even diagonally! You can even expand the
Shape Table to include your own special
characters.

by Robert A. Devine
1415 W. 19th Street
El Dorado, AK

INTRODUCTION

If you do a lot of Hi-Res graphics pro-
gramming, like | do, you've probably run
into the problem of wanting to print text, or
some special messages an the graphics
screen. But sometimes placing all of your
communications in those four bottom lines
of text doesn't make for a professional
looking program. If you're displaying graph-
ics on Hi-Res page 2, then you're totally out
of luck, so some better answer is needed

To solve the problem, | bought a Moun-
tain Computer ROMPLUS board with a
keyboard filter This hardware is great, but
let's face it — if you're writing programs
which may run on someone else's Apple (|
write a lot for Nibble). your program can't
depend on these aids. The solution is to
build your own software-driven general
purpose graphics aids.

SPECIAL CHARACTERS
Inthis article, we'll look at a Shape Table
that makes a large variety of special graph-
ics characters available for use on either
Hi-Res screen. These special characters
are.

1. The numbers 0-9
2. The alphabet characters A-Z.

3. The special characters 2.'+-=$ and a
blank

An apple

5. The symbols representing the four suits
of playing cards: the diamond, heart,
spade, and club. These characters are
included in the Shape Table listing
which I've called GRAPHICS CHAR
AS9300/L768. All of the shapes in this
table are vector shapes.

“PRINTING" WITH SPECIAL
CHARACTERS

So you may say, BIG DEAL!!! If you've
been using your Apple forvery long, you've
probably already run into several listings of
keyboard Shape Tables that can be used to
simulate Hi-Res text. What's different about
this one? Nothing, really!

We're going to concentrate here on some
techniques that you can use, with this table
or others. to make “printing” with these
tables almost as easy as if you were using
normal text. We'll look at an Applesoft pro-
gram listng which demonstrates several
uses of these characters on the Hi-Res
screen, as well as a subroutine which
shows how you can easily access any of
these characters for printing on the screen.

With our routines you will be able to . . .

PRINT IN THE NORMAL FASHION, OR

<
(@]
c
i [¢]
- 3
2 o
w >
T \’\:‘\' 2
- ‘\p. 3
(4] (8)
2 (€) -
o g X
) X
] N 7]
< N\ =
3 Q\e >
o © <

‘NMOQ 301S-dN LNIdd N3A3 NVO NOA HO

In the demonstration, you'll see exam-
ples of how to DRAW the characters using
normal HPLOT coordinates, as well as a
way to easily simulate the VTAB and HTAB
statemerts used in regular text printing.

TYPING IN THE PROGRAM
To enier the program, first type in the
character Shape Table from Listing 1 (see
the Welcume to New Nibble Readers if you
don'tknow how) and save it to disk with the
following commanga:

BSAVE GRAPHICS CHAR A$9300/L768,
A$9300,L768

Then key in the demonstration program
from Listing 2 and save it to disk with the
command SAVE DRAW TEXT DEMO. RUN
the program to see how it works, and then
examine it to see the programming tecnh-
niques used.

HOW THE TABLE IS ORGANIZED

First I2t's look at how the table is organ-
ized, how the shapes were created, and
how you can add your own shapes to the
table.

The first byte of every vector Shape
Table indicates the number of shapes in
the tablz; in this case we've indicated that
tnere are 53 shapes. In reality there are
only 50, as one of the characters in the
table is a blank. Character11 (the blank) has
no shape. therefore, no vectors are needed.
So pointer 11 simply points to the last two
bytes in the taole, $95FE and $95FF, both
of which should contain 00. If you add any

shapes to the table, you can't use thesg two
bytes, nor can you use any bytes past
them, because DOS begins at the very next
byte, $9600.

The reason that 53 shapes are listed is
that there are 29 bytes ($95E1-$95FD) that
are available for you to add up to two addi-
tional shapes of your owr, while retaining
the balance of the table. To add them,
simply put the shapes ir the referenced
bytes. The pointer for shape 52 is already
set, but you'll need to set the pointer for
shape 53 in bytes $936A and $936B.

Bytes $9300-$936B are the 53 shape
pointers

Bytes $936C-$93DB are shapes 1-10 (the
numbers 0-9).

Bytes $93DC-$94F4 are snapes 12-37 (the
alphabet A-Z).

Bytes $94F5-$9534 are shapes 38-46 (the
characters ?.,I'+-=$).

Bytes $9535-$9569 are shape 47 (an apple)

Bytes $9570-$95EQ are stapes 48-51 (dia-
mond, heart, spade, and club).

Bytes $95E1-$95FD are
shapes 52 and 53.

Bytes $95FE-$S95FF are skape 11 (a blank)

available for

HOW THE SHAPES ARE CREATED

All of the normal keyboard characters
are drawn on a 5x7 grid and we have used
this same grid to draw our Hi-Res shapes. If
you wish to add other characters that will
be compatible, you should be careful to
begin your new shapc in the top left-hand
corner of the 5x7 box so the characters will
line up properly. The playing card symbols
and the apple are larger, and each of these
begins in the center of the shape.

THE DEMONSTRATICN PROGRAM

In the demonstration program you will
find four separate demos, each showing
different ways of using tne character set
We won't take any time going through the
demos themselves. Your best bet here is to
enter the program and run all the demos
You can then go into each clearly-marked
demo section to see how the various types
of printing were accomplished

WHAT MAKES IT ALL WORK

The heart of the progrem is contained in
lines 30 and 40 as well as in lines 460-500
These are the parts of the program that you
should understand in order to apply these
techniques for your own use.

Let's look at lines 460-500 first, as they
get everything set up for the program.
Line 460 BLOADs the Shape Table and sets
HIMEM. You should note that HIMEM is set
not only to protect the Shape Table, but
also to protect an ASCII Value Table and

short machine code shape translator that
we'll also be POKEing into memory.

Line 470 sets the Shape Table pointers and
nitializes SCALE, ROTation, and HCOLOR.

Line 480 enters a special ASCII Value Table
into memory that will be the key to all trans-
lating of keyboard characters into the
proper shape numbers. First we set A$ to a
string that includes all the legal characters,
placed in the same order as they appear in
the table. Then we step through the string
and POKE the proper ASCII code for each
keyboard character into the ASCIl Value
Table.

Line 490 reads and POKEs a short machine
code translator into memory. The following
describes how that routine disassembles
and what it does:

92BF- A2 2E

LDX #46 Point to last keyboard

character in the table

92C1- BD D092 LDA $92D0.X Get Xth ASCIl code

from the ASCII Value

Table

92C4- C5 19 CMP §19 Compare to ASCII
code in $19 (dec. 25)

92C6- FO 0§ BEQ $92CD If 1t matches, GOTO
$82CD

92C8- CA DEX Point to next coge in
ASCII Value Table

92C8- DO F6 BNE $92C1 f not at end of tavle,
GOTO $92C1

92CB. A2 0B LDX #11 No match found — set
for shape 11 (blank)

92CD- 86 19 STX $19 Store X-Register value
in $19 (dec. 25) shape
number

92CF- 60 RTS Shape number select-

ed — < RETURN

In order to use the routine, you must
POKE the ASCII code for the character that
you want to print into location 25 ($19),
then CALL 37567 which is the translator
routine. This routine uses the X-Register to
step through the ASCII Value Table, look-
ing for a code that matches what you putin
memory location 25. When it finds a match,
it replaces the value in location 25 with the
contents of the X-Register, which is the
proper shape number for that character. If
itgoea completely through the ASCII Value
Table without finding a match, it returns
with the value 11 (a blank) in location 25,
thus eliminating the possibility of your
program crashing due to illegal input.

The proper syntax for use with the trans-
latoris:

POKE 25, ASC(character you wish to print)
CALL 37567
DRAW PEEK(25) at X,Y

This same translation method could eas-
Ily be applied to any other Shape Table of
keyboard characters that you might have.

SIMULATING THE HTAB AND VTAB
STATEMENTS

One big problem of trying to print texton
the Hi-Res screen is that while the Hi-Res
screen is 280 dots wide by 192 dots high (or
160 dots high on page 1), the normal text
screen is only 40 characters wide by 24
lines high. In order to make it easy to work
with, we'll simply assume that we're dealing
with the normal text screen which has legal
HTABs of 2-39 and legal VTABs of 0-23.

We will use the variable HT to specify the
HTAB where we want to begin printing our
string, and VT to specify the VTAB where
our string will appear.

The proper syntax for printing a string (in
its normal horizontal position) is:
HT=HTAB (0-39)

VT=VTAB (0-23) or 0-19 on Hi-Res page 1
AS$="STRING YOU WISH TO PRINT"
GOSUB 30

Line 30 will automatically translate your
HT and VT into the proper Hi-Res coordi-
nates for the DRAWing routines and move
your “cursor’ rightward onz position for
each new character in the strng. The string
willbe pulled apart, character-by-character,
translated into the proper shape numbers,
and printed on the screer.

The print routine at line 30 's intended for
use with normal left-right printing. When
playing our games with printing upside-
down and backwards, or up and down on
the screen, you will need to break apart the
slring to be printed sumewhere else in your
program and send the characters to be
orinted to the print routine, at line 30,
character-by-character.

A CLOSING NOTE

If you don't have much experience work-
ing with Shape Tables, or you've had times
when you wanted to print text on the Hi-
Res screen, it would be worth your time
and effort to enterand run the demo listing.
You may later find some of the techniques
quite useful.

LISTING 1 — DRAW TEXT DEMO

248 HPLOT 42,100 TO 43,50 TO 84,40 TO 185,55 TO 124,64
8 TO 147,280 TO 168,25 TO 189,56 7O 21¢,76 TO 231,

HTAB &1 PRINT "TOUCH ANY KEY 70 C

:A$ = "ANYBODY FOR A GAME OF CARDS ?*

| REM KEREFERERERKIAREREER SRR ®
2 REM * DRAW TEXT DEMO =
3 REM * BY ROBERT R. DEVINE # 38 TO 252,35 TO 273,25
4 REM % COPYRIGHT (C)> 1984 = 258 HOME : VTAB 221
S REM % BY MICROSPARC, INC. #* ONTINUE >"j: GET As: PRINT
é REM * LINCOLN, MA. 01773 = 248 REM #xux DEMO M3 seux
7 REM EEEEAE R R AR RR AR AR R RS 279 HOME : HGR2
18 GOSUB 46@0: GOTO &8 iVT = 8:;HT = 5: GOSUB 30
20 REM LINES 38-4@ SET HTAB & UTAB, TRANSLATE STRING 280
ELEMENTS TO SHAPE WS, TEST FOR ILLEGAL CHARACTER 298

S, AND PRINT THE STRING

HT = HT % 7:UT = UT % 8: FOR X = 1 TO LEN (A$): POKE
25, ASC ¢ MID$ (A$,X,1>): CALL 37567: REM PULL S
TRING APART, CALL TRANSLATOR TO GET SHAPE #

48 DRAW PEEK (25) AT (HT - 7) + (X ¥ 7) ,UT: NEXT : RETURN

8

S8 REM *%x% DEMO H1 *%x»

é8 HOME : HGR2 :A% = “"HI-RES CHARACTER DRAWING" :UT =
2:HT = 8: GOSUB 30

78 A% = "WITH THIS ROUTINE YOU CAN “PRINT’ ANY*:UT = 4

348 DRAW 47 AT 88,178:A% = “’S SCORE = " + STRS (INT
tHT = @: GOSUB 3@ ¢ RND (1) » 508))iVUT = 22:HT = 13: GOSUB 30
E® A% = "OF THE FOLLOWING CHARACTERS.....":UT = S: GOSUB 3%8 A% = "TOUCH ANY KEY TO CONTINUE®":UT = 17:HT = 7: GOSUB
30 381 BGET A$: PRINT
98 A$ = "ABCDEFGH! JKLMNOPQRSTUUXYZ" :UT = 7: GOSUB 3¢ 360 REM #wxx DEMO #4 #uwx
180 A$ = "01234¥4789 ?.,! +-=$":UT = 8: GOSUB 3@ 370 HOME : HGR2 :A® = "NOW YOU CAN PRINT ANY LETTERS,
118 A$ = "OR THESE HANDY SHAPES..,..':VUT = |8: GOSUB 3 *1VUT = 8:1HT = 8: GOSUB 38
@ 380 B% = "ANYWHERE YOU WANT THEM":T = @: ROT= 1&: FOR
120 VT = UT + 15:Y = @8: FOR X = 47 TO S1:¥Y = Y + 1l: DRAW 2 =1 TO 22:A% = MIDS (B$,Z,1):T =T + {:UT = T:
X AT ¥ = 15 ,UT: NEXT X HT = 31: GOSUB 36: NEXT Z: ROT= 32
138 A$ = "THE ‘PRINT’ ROUTINE SIMULATES THE":UT = 13: GOSUB 398 B$ = “ON THE HI-RES SCREEN.":T = 29: FOR Z = 1 TO
30 21:A$ = MIDS$ (B%,Z,1):VUT = 23:HT = T: GOSUB 38:T
148 A$ = "NORMAL UTAB AND HTAB FUNCTION.®:UT = 14: GOSUB =T - {1 NEXT 2
30 480 A% = "END OF DEMO ''": ROT= S4:X = 40:Y = 140:2 =
158 A% = "IF YOU TRY TO ENTER AN [LLEGAL CHARACTER" :VUT 1
= 16: GOSUB 38 418 POKE 23, ASC (MIDS (As$,Z,1)): CALL 37547
168 A$ = "A BLANK WILL APPEAR IN IT’S PLACE.":VUT = {7: 428 DRAW PEEK (25) AT X,Y:1Z = Z 4+ 1: ON ¢Z = 1S) GOTO
GOSuUB 38 430:X = X + 10:Y = Y - 18: GOTO 418
178 A% = "TOUCH ANY KEY TO CONTIMNUE-*:VUT = 28: GOSUB 3 430 GET K$: TEXT : HOME : END
9: GET As 449 HCOLOR= 3: FOR A = 2 TO Z + 37: HPLOT A,508 TO A,!
188 REM %% DEMD #2 #x%u 18: NEXT A: HCOLOR= UAL ¢ MID$ (B$,B + 3,1)): FOR
198 HOME : HGR 1 UTAB 22: HTAB S: PRINT "HOW ABOUT & A=2 + 4 T0 2 + 32: HPLOT A,45 TO A,95: NEXT A: RETURN
HANDY SALES CHART 7* 450 REM THIS ROUTINE READS THE SHAPE TABLE,AND SETS
288 HPLOT 40,8 TO 40,140 TO 275,148: FOR X = 20 TO .1 POINTERS
4 STEP 241 FOR Y = 48 TO 278 STEP 18: HPLOT Y,X TO 440 PRINT CHR$ <(4)"BLOAD GRAPHICS CHAR A$93080/L748%:
Y o+ 1,X: NEXT Y,X HIMEM: 37567
218 DRAW 47 AT 98,108:A% = "COMPUTER SALES":UT = |:HT = 478 POKE 232,8: POKE 233,147: SCALE= 1: ROT= @: HCOLOR=
146: GOSUB 38:T = - 13 FOR 2 = 188 TO 20 STEP -~ 3
281HT = 2:T = T + 3:UT = T:A¢t = STR$ (2): GOSUB 480 A% = “B8123456789 ABCDEFGHI JKLMNOPGRSTUVWXYZ?. , '+~
381 NEXT 2 =$°:Y = 37585: FOR X = 1 TO LEN (A$): POKE Y, ASC
220 B% = "SALES IN THOUSANDS®:T = {9 ROT= 48: FOR 2 = ¢ MID® (A$,X,1)2):Y = Y + 1: NEXT x: REM POKE ASC
1 TO 18:A8 = MID$ (B$,2,1):T = T = 11UT = Ti(HT = VALUE TABLE INTO MEMORY
0: GOSUB 38: NEXT Z: ROT= @ 478 FOR X = 37547 TO 37%83: READ Y: POKE X,v: WEXT : RETURN
WeAt="J FM AMUJI J A S 0 N D":UT = 18: 580 DATA 142,46,189,208,145,197,25,248,5,282,208,24¢6

HT = &: GOSUB 30

300
318

328
338

B = "ASBOK4BS251804958485A4854568" :B = |
FOR 2 = @ TO 248 STEP 48: GOSUB 448: HCOLOR= 8
POKE 25, ASC (MID$ (BS$,B,1)): CALL 37547
DRAW PEEK (25) AT 2 + 5,53: DRAW UAL (MIDS (B$
,B 4+ 1,2)) AT 2 + 12,%54: ROT= 32: DRAW PEEK (25)
AT 2 + 32,187: DRAW VAL (MIDS (B$,B + 1,2)) AT
2 + 25,1041 ROT= @
B =B + 4: NEXT 2: HCOLOR= 3: HPLOT @,158 TD @,1%@
TO 279,198 TO 279,158 TO 8,158
A% = "HUMAN’S SCORE = " + STR$ ¢ INT ¢ RND ¢1) =
S80)) 1UT = 28:HT = 10: GOSUB 38

,162,11,139,25,96

KEY PERFECT 4.0
RUN ON
DRAW TEXT DEMO

CODE LINE# — LINF#
AEAD 1 - 30
BFDC 44 - 130
FCES 140 - 230
F1BF 240 - 338
D3ID4 349 - 430
CD1S 448 - 5090

TOTAL PROGRAM CHECK IS : @8A%1

CHECK CODE 3.9
ON: DRAW TEXT DEMO
TYPE: A

LENGTH: @908
CHECKSUM: 20

LISTING 2 — GRAPHICS CHAR A$9300/L768
9308- 35 80 &4C 0@ 7A @@ 84 @8
9388- 8E 808 9% 060 AS 0¢ B! 006
9318- BC 80 C4 060 DO 86 FE @2
9318- DC 86 E8 @@ F4 @@ FE @@
§320- 09 81 15 @1 20 @1 2B @1
$328- 37 61 41 @1 4B @1 S7 01!
9338- SE 81 4B 61 78 81 83 01
$338- AL A1 98 A1 A4 A1 RA A1
9348- B7 @1 C0 81 CA @1 D& 01
?348- E2 @1 EB 81 FS @1 FD @1
?358- 82 82 88 82 9D 82 12 82
9358~ 1A 82 IF 82 27 82 35 82
7366- 70 82 BA 82 AP 82 C3 082
9348~ E1 02 688 88 32 34 74 2D
9370- BC 24 24 I1C 3F 4E BA 17
9378- 846 88 12 2C 2C 36 36 6E
£388- 1A 3F 3F 80 42 2D 15 BE
9388- 17 BF 2E 2D 2D 86 &2 2D
?398- 15 FE 2A 15 Fé 3F 1C 84
9398~ 80 49 36 AE 37 26 1C 3F
93A8- 27 21 21 21 @8 2D 2D DE
P3A8- 1B 36 2D AD F& 3F 1IC @4
73B0—- 88 B9 FS BB 36 76 2D 8C
?3B8- E4 3F @7 88 && 20 35 17
93C8- 17 36 34 80 29 AD BS Fé
93C8- 3F 1C &4 2D 3F 1C 24 @@

?3D6-
?3D8-
?3E0-
P3E8-
P3F0-
F3F8-
7480~
?488-
9410~
?418-
?4z0-
9428~
9430
9438~
?440-
9448-
9450~
?458-
?440-
?448-
?470-
9478~
?480-
?488-
?490-
9498~
?4A0 -
?4A8—
?4B0O -
?4B8-
?4C0 -
?4C8-
?4D06 -
2408~
?4E0 -
P4E8-
P4F@ -
?4F8-
2500 -
958~
?510-
?518~-
9520~
2528~
75306~

32
E4
FE
2D
95
3B
36
88
24
1B
29
24
24
2D
ee
1C
1C
36
36
Sé
24
29
24
B4
icC
34
E4
8E
20
36
36
84
35

24
24
17
BE
3F
ey
eq
8é
2D
8D
1E

9538~
95406~
2548~
P550 -
9358~
9540~
9368~
95708~
?578-
580 -
2588~
2590~
2598~
?25Aa0 -
P5A8-
?5B6 -
7388~
95C8-
?S5C8-
yoDe -
?508~
9SEB -
POE8-
o5Fe -
?SF8-

KEY PERFECT 4.0
RUN ON
BRAPHICS CHAR A$9386/L768

CODE ADDR# — ADDRM
2ADA 9360 — II4F
234F 930 — FIIF
2300 9340 — FIEF
2468 IIFO — F43F
280E 9448 - 948F
2A56 9499 — F4DF
29CD 94E@ — 952F
25DA 9538 - 957F
2400 9580 — 9SCF
1640 9508 — FSFF
TOTAL PROGRAM CHECK IS : 8306

CHECK CODE 3.0
ON: GRAPHICS CHAR A$9388/L768
TYPE: B

LENGTH: 03990
CHECKSUM: AS

