CIFARCIEAS. CIRCUTIE CELLAR

BUILD A

SERIAL

EPROM

PROGRAMMER

BY STEVE CIARCIA

An inexpensive way to put
your programs on a chip

Over the years, many ar-
ticles have been pub-
lished on programming
EPROMSs (erasable pro-
grammable read-only
memories). The number
of articles alone indicates
the value of an EPROM programmer and
the interest expressed in the subject. True-
blooded computer experimenters consider
an EPROM programmer as essential a tool
as a soldering iron and a DVM (digital
voltmeter).

Most EPROM programmers designed for
personal computers are implemented as
bus-dependent 1/O (input/output) peripheral

cards that use computer-specific, machine-

language driver programs. By eliminating
the need for an enclosure and using the
system power supply, a relatively cost-
effective unit can be produced. Unfor-
tunately, if I designed such a unit, it prob-
ably wouldn’t be for the computer you own.

For computer users who don’'t have ex-
pansion buses or who want their EPROM
programmer to be transportable between
systems, the only alternative is a stand-
alone EPROM programmer attached to a
serial port (much like a modem). Making it
a separate peripheral device, however,
necessarily increases its cost. In fact, exter-
nal serial-port EPROM programmers are fre-
quently two or three times the cost of

board-level units.

A certain portion of the cost is due to its
separate power supply and enclosure, but
most of the expense is attributed to the
features that manufacturers generally incor-
porate in the devices. The majority of stand-
alone serial-connected programmers are, in
fact, designed as intelligent EPROM pro-
grammers that have the basic processing
power and memory of whole computers. |
have taken this approach on previous
designs. Such devices perform well and re-
quire little assistance from the host system
beyond the data to be programmed.

This time I'm approaching the problem
differently. I've decided to keep it simple
and design the most universally applicable
and cost-effective programmer that I can.

The latest Circuit Cellar EPROM program-
mer is a serial-port programmer that has the
speed of a turtle, the intelligence of the
mightiest computer (that is, it has absolutely
no smarts of its own), and is as functional
as a doorstop between uses. On the posi-
tive side, it’s fully documented, universally
applicable, and easily expandable to ac-

(continued)

Steve Ciarcia (pronounced *'see-ARE-see-ah”) is an elec-
tronics engineer and computer consultant with experience
in process control, digital design, nuclear instrumenta-
tion, and product development. He is the author of
several books about electronics. You can write to him
at POB 582, Glastonbury, CT 06033.

COPYRIGHT © 1985 STEVEN A. CIARCIA. ALL RIGHTS RESERVED.

FEBRUARY 1985 « BYTE

105

commodate future EPROM types.

The serial-port programmer can be
operated from almost any system with
a serial port. The driver software is
written completely in BASIC with no
machine-language routines. The
serial-port programmer offers all the
hardware features to program 2716,
2732,. 2732A, 2764, and 27128
EPROMS through a serial port, in-
cluding: RS-232C compatibility, no
handshaking necessary, internal
power supplies, jumper-selectable
EPROM types, and jumper-selectable
data rates.

The BASIC-language driver program
included offers features such as:

e menu-driven operation using single
keystrokes

® a help routine that can be called at
any time

e single-byte or burst-write modes

e read or copy EPROM

e optional programming from a disk
file

e verify after write

® verify EPROM erasure

e screen-dump routines by page or
byte

e single-stepping mode

e software-controlled read/write
mode select

e BASIC driver that can be user-
modified

REVIEWING EPROM BAsIcS

A personal computer, even in its
minimum configuration, always con-
tains some user-programmable mem-

ory or RAM (random-access read/
write memory), usually in the form of
semiconductor-memory integrated
circuits. This memory can contain
both programs and data and can be
read or modified as needed.

Any of several kinds of electronic
components can function as bit-
storage elements in this kind of mem-
ory. TTL (transistor-transistor logic)
type-7474 flipflops, bistable relays, or
tiny ferrite toroids (memory cores) are
suitable, but they all cost too much,
are hard to use, and have other dis-
advantages.

In personal computer and other
microprocessor-based applications,
the most cost-effective memory is
made from MOS (metal-oxide semi-
conductor) ICs (integrated circuits).
Unfortunately, data stored in these
semiconductor RAMs is volatile.
When the power is turned off, the
data is lost. Many ways of dealing with
this problem have been devised, with
essential programs and data usually
stored in some nonvolatile medium.

In most computer systems, some
data or programs are stored in non-
volatile ROM (read-only memory). A
semiconductor ROM can be random-
ly accessed for reading in the same
manner as the volatile memory, but
the data in the ROM is permanent. In
a mask-programmed ROM, the data
that can be read is determined dur-
ing the manufacturing process. When-
ever power is supplied to the ROM,
this permanent data (or program) is
available. In small computer systems,

0, —
a7 [28] Vee
Ag [2] 23] Ag
As [3] 22] As
Ae Lt i AL e

Ao

CE/PGM

.
%

0,
03 .

O

S
Vee [1] 28] Ve
Ayp E E PGM
A; [3] 26] NC
L e T
As 5] 22 Ag
A [E] 23] Ay
A3 [7] . [P
o 21] Ao
A [B] 20] CE
Aq [19] 9] oy
0o [11] 18] 0g
01 [2] 7] 05
0, [13] 16] 0,
GND [1a] [15] 04

Figure 1: Pinouts of the 2716 and 2764 EPROMs.

106 BYTE * FEBRUARY 1985

ROM is chiefly used to contain
operating systems and/or BASIC
interpreters—programs that don't
need to be changed.

Another type of ROM is the PROM
(programmable read-only memory). A
PROM component is delivered con-
taining no data. The user decides
what data it should contain and per-
manently programs it with a special
programming device. Once initially
programmed, PROMs exhibit the
characteristics of mask-programmed
ROMs. You might label such PROMs
as write-once memories.

The EPROM, which is ultraviolet-
light-erasable, is a compromise be-
tween the write-once kind of PROM
and the volatile memory. You can
think of the EPROM as a read-mostly
memory, used in read-only mode
most of the time but occasionally
erased and reprogrammed as neces-
sary. The EPROM is erased by expos-
ing the silicon chip to ultraviolet light
at a wavelength of 2537 angstroms.
Conveniently, most EPROM chips are
packaged in an enclosure with a trans-
parent quartz window.

How AN EPROM WORKS
EPROMs store data bits in cells
formed from stored-charge FAMOS
(floating-gate avalanche-injection
metal-oxide semiconductor) tran-
sistors. Such transistors are similar to
positive-channel silicon-gate field-
effect transistors, but they have two
gates. The lower or floating gate is com-
pletely surrounded by an insulator
layer of silicon dioxide; the upper con-
trol or select gate is connected to ex-
ternal circuitry.

The amount of electric charge
stored on the floating gate determines
whether the bit cell contains a 1 or a
0. Charged cells are read as 0s; un-
charged cells are read as 1s. When the
EPROM chip comes from the factory,
all bit locations are cleared of charge
and are read as logic Is; each byte
contains hexadecimal FE

When a given bit cell is to be
burned from a 1 to a 0, a current is
passed through the transistor’s chan-
nel from the source to the gate. (The
electrons, of course, move the op-
posite way) At the same time, a
relatively high voltage potential is
placed on the transistor's upper select
gate, creating a strong electric field
within the layers of semiconductor

(continued)

104 BYTE FEBRUARY 1985 . PHOTOGRAPHED BY PAUL AVIS.

(aN3S 0L ¥V310 WNOILdO) v Nid OIDl
_ 2] mﬁq
=1 P - — W vay
E 52 1al
/NW sh\ 0S92 —feal
! vISvL 2Iot saL 2
4700t 184 T AS+ 291 B2
+_ _ ez} 2 Hva b= ;
- saL = L vosaw
T - e 2101
gdin 1€ 3
p1S0L 3ot - —wi @
201 bren —sal
00S1v¢ -
901 yISINL
AGH 291 u|
5 [o
; wod| © = oa o8 as tay
o T3 T 3 81 2t
208710¢ ey L 9T 5] ¢ T I e - 049
m
2101 . 20l =12 as |- 3 e asn 4
1 e] 9 o LN €a 05 as vay T amsl—d
Aok ST 2t Tt 3 < G IR
¥V3IIO NI0 AT 99 = ddA vaper =10 a k= ry 2 ELL] o
SSA
R\ saf— o [ae |- o0 @ =
H . ot = 90 b= =1 %2 a2 b= 51408 @
aNg LIESE 4q 61 2 o at € s gy
az b
H3ILNNOD bz HOLY
55 SL1ST0L 7 Yiva
3700 801 201 N VLESTIVL
Q¢ =1 2ox LTE Liel] S101-EAV
o ez = 121
4o N2 39V110A ot _ |
—{ T081N0D 2, m_Q uf
ar A
3 :-.O.wwuth ov ot T ey
HIOHVHOSIO 100 —@
7 _ € -
5 & ._r 0z N [G b Bt
N w o ac
H05¥ ¢ Gl v s Ll S s |2 5031
< A 1353y @ AMA = 8 P o I8 vZ /N
8 n_ ’ oLy 7 7T T
2a3 2y L
1y 9 6 ”n ar 8 o84 52 0121 2 Nid
sv £ ae
v = S 9 z
297 2 WIS 51 %2 e 158153 1091 € Nid
¢ —I w ot at
A 2 53 € 2 €
hst - ssHudoy
3 vU i
2ELUNI 43MO01
T o = YLESTWL
cm EEE——— 31
e £2 Ist 13008
» 208719 32 41z
m
wotr | - 2. o & _4.\ uf
2 2
Z .wm. 37 %19
i 8v o8 |
€ : A_.m &t ov |2 e l®
RS _ : v 5t| ™ b
v
= 0z e G 5 I 79 a3
] 0§ as A
z zt & T »
1 2w oy ar $3
2 G 8 ve
o¢ as adnN voLy
2z 9 2 - 3]
9/N o— 02 az = = 50N
e — o al ——{sai taan | «
' e HOLV — 008192 29,
4. 49 A
s 300N/ 39Vd 991 = - AG+
¢ VLESVL oy
TOLY v €91
9y
My
2 $0SIWL
338 NI L - sl 213 HOLYY¥3N3O
. 100 geewT v & ol
A JLIENT Aset o Wou4

107

FEBRUARY 1985 « BYTE

The serial-port EPROM programmer.

Figure 2

material. (This is the function of the
+21- or +25volt [V] V,, charging
potential applied to the EPROM.) In
the presence of this strong electric
field, some of the electrons passing
through the source-drain channel gain
enough energy to tunnel through the
insulating layer that normally isolates
the floating gate. As the tunneling
electrons accumulate on the floating
gate, the gate takes on a negative
charge, which makes the cell contain
ao.

When data is to be erased from the
chip; it is exposed to ultraviolet light,
which contains photons of relatively
high energy. The incident photons ex-

Table 1: Power supply and ground pin numbers for figures 2 and 3.

cite the electrons on the floating gate
to sufficiently high energy states that
they can tunnel back through the in-
sulating layer, removing the charge
from the gate and returning the cell
to the 1 state.

The 2700 family of EPROMs con-
tains bit-storage cells configured as in-
dividually addressable bytes. This
organization is often called “2K by 8"
for a 2716 or “8K by 8" for a 2764.
Figure 1 shows the 2716 and 2764.
The completely static operation of
these devices requires no clock
signals. The primary operating modes
include read, standby, and program
(program-inhibit and program-verify

4
B
(OPTIONAL)

It

IC Number Type Ground 5V 12V -12V
IC1 AY3-1015 pin 3 pin 1
IC2, 748175 pin 8 pin 16
IC3,4,5 748374 pin 10 pin 20
IC6 741800 pin 7 pin 14
IC7 741514 pin 7 pin 14
IC8 NE555 pin 1 pin 8
1C9 741.8502 pin 7 pin 14
IC10 MC1488 pin 7 pin 14 | pin 1
IC11 MC1489 pin 7 pin 14
IC12 74L.804 pin 7 pin 14
IC13 CD74HC4040 pin 8 pin 16
T
4.9152MHz
1
il
1.8K 1.8K
ic12
741504
..__LDOLA{>°4_,.
$ 33K
RS-232C CONNECTOR '|7
1c11 7
MC1489
1 3
1910 | 10] 113 1
Ic10 CD74HC4040 ";7
MC1488 . :
15014112}13} 4} 2| 3
<z} 33(0 2 1c1-25 lllllll
0

150
300
1200
2400
4800
9600

-
CLOCK
1IC1-17, 40

DATA—-RATE GENERATOR

Figure 3: Serial interface and data-rate generator.

108 BYTE ° FEBRUARY 1985

modes are important primarily in
high-volume applications).

Control inputs are used to select the
chip and configure it for one of these
operating modes. In the program
mode, particular bit cells are induced
to contain O values. Both 1s and Os are
present in the data word presented
on the data lines, but only the
presence of a 0 causes action to take
place. To program the 2716 EPROM,
the V,, input is made +25 V and the
OE input is at a high TTL level. Then,
the TTL-level data to be programmed
for a specific address is set up on the
2716's data lines, and the address is
set up on address lines AO through
Al0. After a setup time of at least 2
microseconds (us), a high TTL-level
programming pulse 50 milliseconds
(ms) long is applied to the CE/PGM in-
put. Addresses to be programmed
may be specified in any order.

The 50-ms programming pulse must
be applied once for each location to
be programmed (under no circum-
stances should a constant high level
be applied to the CE/PGM input in the
program mode). Repeated 50-ms
pulses to the same location are ac-
ceptable, but any pulse width greater
than 55 ms might destroy the chip.
The minimum pulse width is 45 ms.

CIRCUIT DESCRIPTION
Figures 2, 3, and 4 show the sche-
matic drawings for the serial-port
EPROM programmer, the RS-232C in-
terface, and the four-voltage power
supply. Table 1 shows the power-
supply connections for the sche-
matics. The main element in figure 2
is the A¥-3-1015 UART (universal asyn-
chronous receiver/transmitter). The
UART converts serial information sent
from the computer into parallel infor-
mation used in the programmer. This
parallel data appears on pins 5
through 12 of the UART receiver bus.
The UART can also pass information
back to the computer by converting
any parallel information present on
pins 26 through 33 of the transmitter
bus into serial information. The serial
information is received from the com-
puter on pin 20 and transmitted to the
computer on pin 25. ;
A logic high level on pin 21 resets
and initializes the UART. This level is
generated as a power-on reset (PWR)
every time the power to the program-
mer is turned on or the manual reset
button pressed. This PWR also clears

the receiver character counter, IC2.

UART pins 35 through 39 set the
format of the serial transmission be-
tween the computer and the program-
mer. (I chose to hard-wire these op-
tions rather than provide option
switches that are rarely used.) As
shown, the UART is configured for an
8-bit character length with 1 stop bit
and parity checking inhibited. If your
computer requires 2 stop bits, con-
nect pin 36 to +5 V instead of ground.
The programmer will operate at any
desired data rate up to and including
9600 bits per second (bps). A soft-
ware delay loop keeps the program-
mer from being swamped.

The programmer requires 4 bytes to
be sent from the computer for each
location read from or written to in the
EPROM. This 4-byte protocol elimi-
nates the need for incremental
counters and sophisticated decision
logic in the programmer. It does,
however, reduce the speed of read
and erasure-verification operations.

The first 3 bytes received are
latched a byte at a time into latches
IC3, IC4, and IC5. The latching pulses
are generated by IC2, which is con-
figured as a 4-bit byte counter. Each
time a byte is received by the UART,
an RDA (received data available) pulse
is generated at pin 19 of the UART.
This pulse is used to clock IC2 and is
gated back to the RDAV (reset data
available) line, pin 18, to clear the
receiver section of the UART. As the
counter clocks, the leading edges of
its output latch the data from the
UART into IC3, IC4, or IC5. The
counter is reset by the PWR line or
when the fourth byte is received.

The first byte received by the pro-
grammer contains the most significant
3 to 6 bits of the EPROM address
(depending upon the EPROM type)
and 1 bit to select either the read or
write mode of operation. A logic 1 in
bit 7 sets the write mode; a logic 0
sets the read mode.

The second byte contains the lower
8 bits of the EPROM address.

The third byte contains the data to
be programmed into the addressed
location when it is in the write mode
or a dummy character when in the
read mode.

The fourth byte contains dummy
data in both the read and write
modes. When the counter increments
with the reception of the fourth byte,
it causes IC2 to reset. The time be-

tween setting this output bit and
clearing the counter is about 100
nanoseconds (ns). This short pulse
concluding the setup of the address
and data is used to trigger the actual
programming pulse to the EPROM.

The programming pulse to the
EPROM is generated by IC8, which is
configured as a 50-ms one-shot (trig-
gered by the reception of the fourth
byte). The programming pulse is fed
to the EPROM at several different
locations, depending on which
EPROM is being programmed and
how the EPROM selection jumper
block (see figure 5) is configured.

The one-shot is functional only
when the mode select line (R/W,
read/not write) IC3 pin 2 is a logic 0,
setting the write mode. The mode
select line is also used to select the
programming voltage ranges of the
various EPROMs. When configured
for a 2732 or a 2716 EPROM, a low
on the mode select line sets the V,,
supply to a 25V level. For all other
EPROM types, the V,, supply is set to
a 21V level.

Depending on the configuration of
the jumper block, the mode select
line sets the proper TTL levels at the
CE and OE pins to place the various
EPROMs in the read or write mode.
A logic high on the mode select line
causes the V,, supply to drop to 0 V
for the 2732 and 2732A EPROMs and
to 5V for the other types.

The mode select line also functions
as the output enable line of data latch

IC5. When the programmer is in the
write mode, data from the UART is
latched and directed to the EPROM
data bus for programming. When the
programmer is in the read mode, IC5’s
output is disabled, and the EPROM
data-bus contents are transmitted
back to the computer.

LEDs (light-emitting diodes) 1, 2,
and 3 indicate when power is on and
when read and write pulses occur.
They are not necessary to the opera-
tion of the programmer and are mere-
ly included as visual aids.

Figure 3 shows the serial-interface
connections and the data-rate
generator. IC10 and IC11 are standard
RS-232C transmitter and receiver
chips that conform to the EIA (Elec-
tronic Industries Association) stan-
dard for RS-232C transmission. (If
your computer needs a handshaking
signal, the 50-ms write pulse can be
connected to the clearto-send line. It
is not used with the software pre-
sented in this article.) The serial-com-
munication rate between the pro-
grammer and the computer is jumper-
selectable. A 4.9152-MHz oscillator
is divided down through a
CD74HC4040 (it must include the HC
designation to accommodate the high
frequency) to produce the appropri-
ate clock rate for the UART.

Figure 4 shows the power supply
used with the programmer. The power
transformer 1 chose was 22V CT
(center tap), but any transformer from

! (continued)

cs
D4 +35V A70uF
IN4002 i 50V
p——o {€
D3 : 7
IN4002 +12V
* . ji
Ll ca D2
—L- 470uF $ 1000 Nazde ¢ c
25V 1 ,’77[\ 10uF
+5V
7
SW Ac + w B2 on
<} GND
~ 22VCT 1 AMP + C6 + c2
—L_ 2200uF
115VAC FULL— e 10pF
e WAVE v I
BRIDGE '
, 1000
AC =
: v
D1

—12V
IN4742 I c1
10uF

s

Figure 4: Power supply.

FEBRUARY 1985 « BYTE 109

22 to 25.6V CT is adequate. The
secondary output of the transformer
is full-wave rectified, filtered, and then
regulatedto +12 V, +5 V,and —12 V.
Only the + 5V supply needs an actual
IC regulator; less stringent zener
regulation is adequate for the 12V

supplies to the RS-232C drivers.
The 35V output consists of com-
ponents C4, C5, D3, and D4 con-
nected as a cascade voltage doubler
with half-wave rectification. This con-
figuration produces an input of ap-
proximately 32 to 34 V to the LM317/

2716
J1 24
J2
J3 22
Jé
J5 20
Jé
J7 18
J8
J9
J10 15
J11 .
J12 13
2732 A
1 24
2 23
6 19
17
9 16
12 13
27128
1 24
<
3 22
4 21
<
7 18
9 16
11 14
12 13

2764

1 24
3 22
4 21
7 18
9 16
12 ; 13
2732

1 24
2 23
6 19
by

16

12 13

Figure 5: Configuration jumpers.

110 BYTE ° FEBRUARY 1985

338 regulator. The minimum accept-
able voltage at the input is 28.5 V (for
a 25V output). If you use a higher-
output transformer than 22 V CT, be
careful that the input to the V,,
regulator doesn't exceed 35 V. If it
does, additional preregulation may be
necessary to use this circuit.

Figure 6 shows the programmable
V,, supply. The 2732A EPROM re-
quires the programming voltage to be
pulsed between 0 and 21 V, while a
2716 requires a pulse between 5 and
25 V. The supply is controlled by the
jumper connections and the mode
select line. With jumper #1 across R6,
the supply is configured for a max-
imum V,, level of 21 V. When it is
removed, the supply has a maximum
voltage of 25 V.

The minimum V,, level is set by two
jumper-selectable programming cir-
cuits, which are also connected to the
regulator's output set point-adjust
line. When jumper #2 is installed, a
two-transistor circuit is enabled, which
applies —1.2 V to the adjust line. The
result is a OV output from the
regulator. When jumper #3 is in-
stalled, the reference-adjust line is set
to allow a + 5%V regulator output.

INTERACTING WITH HARDWARE
The operation of the serial program-
mer should become clear by follow-
ing an example of a write operation
followed by a read operation. This is
the sequence that would necessarily
occur during a standard write-and-
verify cycle.

First, the EPROM programmer is
cleared and set to the read mode by
the power-on reset pulse (which can
be generated by pressing a button or
by turning the programmer on) so
that it is ready to receive the first
character. If we plan a write cycle, the
first character must contain a logic 1
in bit 8 to activate the write mode. The
upper 3 to 6-bits of the EPROM ad-
dress (the page address that depends
on the size of the' EPROM) must also
appear in the first 3 to 6 bits (bit O
through bit 5) of this first character.
Each character of data to be pro-
grammed into the EPROM is sent to
the programmer as a 4-byte transmis-
sion with the programming address
specified each time.

Table 2 indicates the allowable bit
patterns for this first character re-
ceived by the programmer.

For our example, assume that the

data byte C3 (hexadecimal) is to be
written into the first byte of page 4 in
the EPROM. In this case, the first
character received by the program-
mer should be 1x000100. The receipt
of this character pulses IC2 and
latches the page address and mode
select bit into the page/mode latch,
IC3. The mode select bit selects the
EPROM for a write cycle, turns on the

V,, supply to the EPROM, releases
the reset line on the timer, activates
the output enable line of the data
latch, and shuts off the transmission
gate of the UART.

The second character sent contains
the lower 8 address bits for the
EPROM. To program the first location
in page 4, the rest of the address must
then be 00000000. This character sets

Table 2: Allowable bit patterns.

the second stage of the counter and
latches the lower address location
into the lower address latch, 1C4.

The third character, 11000011 (C3
hexadecimal), contains data to be pro-
grammed into the EPROM. When this
character is received, the counter
latches the data into the data latch,
IC5.

The fourth character sent is a
dummy character that may contain
any value. This fourth and last char-
acter simply clocks IC2 .and triggers
the 50-ms programming pulse. When

. the one-shot times out, the program-
Page Write Mode Read Mode mer is still in the write mode. It has
to be set to the read mode by ini-
0 1x000000 0x000000 tiating a read cycle
1 1x000001 0x000001 : .
3 e el The four lcharacter; sent in our pres-
3 1%000011 0x000011 ent example qf a write sequence are
4 1x000100 0x000100 1x000100, which sets the write mode
5 1x000101 0x000101 and upper address; 00000000, which
6 1x000110 0x000110 sets the lower address; 11000011,
7 1x000111 0x000111 which sets the data byte (C3 hexadec-
imal); and xxxxxxxx, dummy data. ;
i ; 11'1 b 5 11'1 e The read sequence is similar to the
% % write sequence. The first character
(continued)
LM317/L.M338 .
mi> >
32-35 VOLTS o ol Vpp
ADJ
S R4
$ 1500
- 1K
ke R5+R6 SETS 25V
Q1 R5 SETS 21V
2N2222 |
$ RS
€ 24K
S < 1
¢ < R7 p N\
2 5100 \
INA732 5y
4.7V :: R6 |J1 (INSTALLED FOR
$ 4709 / A DEVICES)
Q3 /
2N2905 ——%
77
Q2 25V
2N2222 2716
5V
47080 .
4708, 25v
2732
< oV
(2732) 1J2 1J3 (2716, 2764, 27128)
- 21v
R/W 2732A
QV .
Vee READ 21V o
27128
0 WRITE 5V -

Figure 6: Close-up of the programmable V,, supply.

FEBRUARY 1985 « BYTE 111

sent again contains the upper bits of
the address, but bit 8 is now set to
logic 0 to put the mode select line
high (read mode). A logic 1 on the
read/write line deactivates the pro-
gramming one-shot and tristates the
data latch, IC5.

Again, the first character is latched
into the page/mode latch, and the sec-
ond character is latched into the lower
address latch. With IC5 tristated, the
EPROM'’s data output is placed on the
UART transmitter bus. The third char-
acter is a dummy character that is
used to clock IC2. This signal causes
the UART to transmit the data on the
transmitter bus to the computer. The

fourth character is then sent to the
programmer to reset the counter.

The four characters that must be
sent in the verify sequence of our ex-
ample are 0x000100, which sets the
read mode and upper page address;
00000000, which sets the lower
address; xxxxxxxx, which gets the
data byte from the EPROM (C3 hexa-
decimal); and xxxxxxxx, which resets
the programmer.

PROGRAMMER SOFTWARE

The driver program shown in listing
1 could have been written in any lan-
guage that supports input and output
ports. [This program is available for down-

loading from BYTEnet Listings at (603)
924-9820. You can also receive it by send-
ing an 1BM PC-formatted disk and return
postage to Steve Ciarcia.] BASIC was
chosen because it has wide appeal in
the personal computer field and
because most systems with serial 1/O
ports support BASIC. The software
(flow-diagramed in figure 7) was writ-
ten specifically for the IBM PC but can
be easily modified to conform to most
other systems that also support
Microsoft BASIC. The program was
written with a short MAIN program
module that calls a number of subrou-
tine modules. This modular approach
makes modifying, debugging, or ex-

BEGIN
EPROM

INITIALIZE
VARIABLES

SELECT DATA
RATE

SELECT
EPROM
SIZE

SELECT
EPROM
ERASED OR
EPROM
PARTIALLY
PROGRAMMED

READ EPROM
INTO
ARRAY

EPROM
ERASED
&

YES

GET INPUT
BYTE

SET ARRAY
TO ALL
FF (HEX)

T

DIM ARRAY
__AND

OPEN "com1"

PORT

INITIALIZE
BASE ADDRESS
OF EPROM

DISPLAY
PRESENT ,
_ADDRESS AND
BYTE IN

| Array

VERIFY
EPROM
ERASED

DISPLAY b
PREVIOUS >
BYTE

DISPLAY
NEXT >
BYTE

BURN EPROM
AND EXIT

SET NEW
OFFSET »
LOCATION ‘

WRITE TO
~ ARRAY AND »)
RETURN

Figure 7: A flowchart of the driver program.

112 BYTE ¢ FEBRUARY 1985

panding the software a much easier
task. Examining the driver software
should provide enough understand-
ing so that any additions or changes
desired can be easily implemented.
The program modules that access
the serial port are labeled READ A
BYTE and WRITE A BYTE in listing 1.
These sections contain the only soft-
ware modules that are hardware-de-
pendent and that need to be con-
figured to your particular system.
The WRITE module performs the
actual program burn of the data into
the EPROM. The first statement sends
the page address to the serial port
with the value of bit 8 set to 1. This

is accomplished by combining the
page address with the value 128
(10000000 binary). The page address
is calculated elsewhere in the pro-
gram before entering this module.
The next statement sends the lower
address contained in the variable
BYTE to the serial port. This value is
also calculated by the program prior
to entering the WRITE module.

The statement “PRINT #3,DATUM"
sends the data to be written into the

EPROM to the serial port. The last

statement in the WRITE module is a
timing loop that causes the program
to pause while the 50-ms timer in the
serial-port programmer times out.

BURN EPROM

DISPLAY ONE
PAGE OF
EPROM

INITIALIZE \
BASE ADDRESS >
OF EPROM

LOAD ARRAY >
FROM DISK

SAVE ARRAY
TO DISK bt

DISPLAY
HELP >

MENU
YES ALP

FLAG SET
2

NO

The READ module requests a data
byte from the programmer and
receives the byte from the serial port.
It accomplishes this by sending a
page address and byte address to the
serial port as in the WRITE module.
In this case, bit 8 of the page address
is set to O to inform the programmer °
that a read cycle is being performed.
The next two lines send a dummy
data value and a strobe to the serial

" port to complete the read sequence.

The values of DUMMY and STROBE
are set in the INITIALIZATION
module. The data sent by the serial-
port programmer is received in the
variable RDATA.

Once these modules have been
configured to your system, it is a sim-
ple matter to write and read data from
the programmer. Simply -define the
PAGE and BYTE address variables
along with the DATUM value and send
them to your serial port by calling the
appropriate module. The rest of the
program in listing 1 shows methods
for doing this.

The approach used in the program
is to place any data to be pro-
grammed into the EPROM in an array
so that it can be reviewed and edited
prior to burning it permanently into
the EPROM. The array name is appro-
priately called ARRAY(). The high-
order byte of every element in AR-
RAY() stores a flag bit indicating that
the lower-order byte of the element
is data to be programmed. This
method allows the program to write
to only those locations in the EPROM
where a valid data value has been
entered in ARRAY().

Each time a data value is put into
ARRAY(), the value is combined with
256 to set the flag. When it is time to
send all the data to the EPROM, the
flag is checked in each element, and
only those elements with the flag bit
set are sent to the EPROM. This pro-
cess is repeated until all the flagged
elements have been programmed.
The initial values for ARRAY() are
taken directly from the EPROM by
reading each location and storing the
values in ARRAY().

Several methods of entering data
into ARRAY() are used in the program.
One method is to enter each data
value directly from the keyboard; an-
other method is to fill ARRAY() by
reading an already-programmed
EPROM. Finally, a disk file previously

(continued)

FEBRUARY 1985 « BYTE 113

Listing 1: EPROM programmer routines.

1000
1010
1020
1030
1060
1070
1090
1100
1110
1120
1130
1140
1150
1160
1170
1190
1200
1210
1230
1240
1260
1270
1280
1290
1300
1310
1330
1340
1350
1360
1370
1380
1390
1410
1420
1440
1450
1460
1470
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1600
1610
1620
1630
1640
1660
1670
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1850
1860
1870
1880
1890
1900
1910
1920

REM -« SERIAL EPROM PROGRAMMER

REM written in

REM MICROSOFT BASIC for the IBM PC

REM =====================================
REM INITIALIZATION ROUTINE

KEY OFF

LINE25$ = “BAUD RATE=\ \EPROM=\ \ BASE PAGE=\ \”

BR$ ='"'0000"":EP$ = BR$:BP$ = BR$

DEFINT A-Z:ON ERROR GOTO 4600

STROBE = 255:DUMMY = 255:PAGE = 0:BYTE = 0:DATUM = 255

K$="“VPNEOWHDIBSL"”:FORMAT$ = “PAGE =\\ BYTE=\\ DATA=\\"

MIMAGE = 0:MCRADDR = &H3FC:DELAY = 100

REM =====================================
REM MAIN BODY OF PROGRAM — KEYBOARD SEQUENCE

GOSUB 2250

PRINT'========== SERIAL EPROM PROGRAMMER =========="
PRINT* BAUD-RATE SELECTION"

PRINT“The SERIAL PORT programmer can operate at several different baud’

PRINT'rates. Select the baud rate for your system from the list below:"

PRINT* (1) 300 baud”

PRINT* (2) 600 baud"

PRINT" (3) 1200 baud”

PRINT* (4) 2400 baud’’

PRINT" (5) 4800 baud”

PRINT* (6) 9600 baud”

PRINT“Enter the number of your selection —> ";:BAUD$ = INPUT$(1)

PRINT BAUD$:BAUD = VAL(BAUD$):IF BAUD>0 AND BAUD<7 THEN 1360

PRINT" < < < < < BAUD-RATE SELECTION ERROR >>>>>": GOTO 1330

BR$ =STR$(300*2~(BAUD - 1))

GOSUB 2250

PRINT"========== SERIAL EPROM PROGRAMMER =========="
PRINT* EPROM-TYPE SELECTION”

PRINT“The SERIAL EPROM programmer has the ability to program several’’

PRINT*different EPROMS. Select the type of EPROM from the list below:"
PRINT" (1) 2716"

PRINT* (2) 2732/2732A""

PRINT** (3) 2764"

PRINT" (4) 27128

PRINT"'Enter the number of your selection —> "';:ESIZE$ = INPUT$(1)

PRINT ESIZE$:ESIZE = VAL(ESIZES$):IF ESIZE>0 AND ESIZE<5 THEN 1520
PRINT “< < < << EPROM-TYPE ERROR > > > > >':GOTO 1490

DSIZE = 1024*2~ESIZE:PAGES = DSIZE/256

EP1$=STR$(16*2~(ESIZE - 1))

EP$="27" + RIGHT$(EP1$,LEN(EP18) - 1)

DIM ARRAY(DSIZE)

GOSUB 2250:GOSUB 4790:GOSUB 2250

PRINT “======== == SERIAL EPROM PROGRAMMER =========="
PRINT * CONDITION OF EPROM"”
PRINT"'If the EPROM you are programming is fully erased then select

PRINT*'EPROM ERASED’ from the selection list below. This will save’

PRINT"'the time required to read the EPROM into memory. If the EPROM’’
PRINT*'has been partially programmed then select ‘PARTIALLY PROGRAMMED'”
PRINT"'and the EPROM will be read into memory prior to programming.”’

PRINT" (1) EPROM ERASED”

PRINT* (2) EPROM PARTIALLY PROGRAMMED"

PRINT"Enter the number of your selection —> ";:ERA$ =INPUT$(1)

PRINT ERA$:PRINT:ERA = VAL(ERAS):IF ERA=2 THEN 1740

IF ERA<> 1 THEN PRINT"< < < << SELECTION ERROR > > > >>":GOTO 1690
PRINT” < < < < < INITIALIZING MEMORY — PLEASE WAIT >>>>>"

FOR I=0 TO DSIZE — 1:ARRAY(l) = 255:NEXT |

ON BAUD GOTO 1750,1760,1770,1780,1790,1800

OPEN *“'COM1:300,n,8,1,rs,cs,ds” AS #3:GOTO 1810

OPEN “‘COM1:600,n,8,1,rs,cs,ds”’ AS #3:GOTO 1810

OPEN "'COM1:1200,n,8,1,rs,cs,ds” AS #3:GOTO 1810

OPEN "COM1:2400,n,8,1,rs,cs,ds” AS #3:GOTO 1810

OPEN "'COM1:4800,n,8,1,rs,cs,ds”” AS #3:GOTO 1810

OPEN "COM1:9600,n,8,1,rs,cs,ds” AS #3

GOSUB 2250

PRINT "= ========= SERIAL EPROM PROGRAMMER =========="
PRINT * BASE-PAGE INITIALIZATION"

PRINT"The SERIAL EPROM programmer is driven by a keystroke-oriented’’
PRINT"'program. The keys are defined in a HELP menu. This help menu”
PRINT*‘can be displayed at any time by typing the letter (H) after’”

PRINT"'the program has been initialized.”

PRINT:PRINT

PRINT"'To initialize the program you must enter the base page”

PRINT"'address of the EPROM. This address is generally a HEXADECIMAL value”.
PRINT"‘corresponding to the beginning page of an even 2K-byte boundary.”

114

BYTE ¢ FEBRUARY 1985

1930
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040

2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2160
2170
2180
2190
2200
2220
2230
2250
2260
2270
2280
2300
2320
2330
2340
2350
2360
2380
2390
2400
2410
2420
2440
2450
2460
2470
2480
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820

PRINT"‘For example 00,08,B80,B8,etc.”

GOSUB 3770:REM SET BASE ADDRESS
IF HFLAG =1 THEN HFLAG =0:GOTO 1950

IF ERA=1 THEN 2000

PRINT*“A MEMORY IMAGE OF YOUR EPROM IS BEING MADE”

GOSUB 3890:REM MAKE MEMORY IMAGE
GOSUB 2880:REM ; DISPLAY HELP MENU
PRINT:PRINT

PRINT"YOUR PRESENT LOCATION IS:"”

GOSUB 2320:REM READ AND DISPLAY DATA
PRINT*COMMAND —>";

IKEY$ = INPUTS$(1)

IF IKEY$>="a" AND IKEY$< ="z" THEN IKEY$=CHR$(ASC(IKEY$) AND 95)
K=INSTR(K$,IKEY$):IF K=0 THEN PRINT “WHAT ?";:GOTO 2050

HFLAG =0

ON K GOSUB 3430,2380,2440,2160,2500,2660,2880,3550,3760,3980,4240,4400

REM ViR AN S SRR OV A] S D SR S S|

IF HFLAG =1 THEN GOSUB 2880

IF HFLAG =1 OR IKEY$="H" THEN 2010 ELSE 2030

REM =====================================
REM BURN EPROM AND END OPTION

GOSUB 3980

IF IKEY$< >"N" THEN RETURN

CLOSE:END

REM ========z=============================
REM MAIN BODY ENDS HERE — SUBROUTINE MODULES FOLLOW

REM =============z=====z===z====z=z===========
REM DISPLAY STATUS LINE

CLS:LOCATE 25,1:PRINT USING LINE25$;BR$,EP$,BPS;

PRINT “COMMANDS: ";K$

LOCATE 3,1,1:RETURN

REM ======z=z==============s================
REM DISPLAY LOCATION AND DATA

RDATA = ARRAY(PAGE *256 + BYTE) AND 255:REM GET DATUM FROM ARRAY
PRINT USING FORMAT$;HEX$(BIAS + PAGE),HEX$(BYTE),HEX$(RDATA)

RETURN

REM =====================================
REM DECREMENT ADDRESS

IF PAGE =0 AND BYTE=0 THEN RETURN ELSE BYTE=BYTE -1

IF BYTE= -1 THEN PAGE =PAGE - 1:BYTE =255

RETURN :

REM ================z=====================
REM INCREMENT ADDRESS

IF PAGE =PAGES -1 AND BYTE =255 THEN RETURN ELSE BYTE =BYTE + 1

IF BYTE =256 THEN PAGE =PAGE + 1:BYTE=0

RETURN

REM ============z=========================
REM OFFSET TO NEW STARTING ADDRESS

ADD$ =" ":PRINT:PRINT"ENTER NEW LOCATION IN HEXADECIMAL (hhhh) —> ";
L$=INPUTS$(1):PRINT L$:

IFL$>= "a” AND L$< ="z" THEN L$=CHRS$(ASC(L$) AND 95)

IF L$="H" THEN HFLAG =1:RETURN

IF L$="Q" THEN PRINT:RETURN

ADDS$ = ADDS$ + L$:IF LEN(ADD$) =4 THEN PRINT ELSE 2510

PAGE$ = LEFT$(ADD$,2):BYTES = RIGHT$(ADDS$,2)

CON$ = PAGE$:GOSUB 3110:IF SUM= -1 THEN 2500

PAGE = SUM - BIAS

IF PAGE >PAGES -1 OR PAGE<0 THEN PRINT" < << << OUT OF RANGE > >>>>":GOTO 2500
CON$=BYTE$:GOSUB 3110:IF SUM= -1 THEN 2500

BYTE =SUM

RETURN

REM =====================================
REM WRITE TO ARRAY — BYTE BY BYTE

XFLAG =0:DATUM$ =" ":PRINT"< < < WRITE MODE >>> ENTER DATA IN HEXADECIMAL (hh) —> ";
D$=INPUT$(1):PRINT D$;

IF D$> ="a” AND D$< ="z" THEN D$=CHR$(ASC(D$) AND 95)

IF D$="H" THEN HFLAG = 1:RETURN

IF D$="Q" THEN PRINT:RETURN

IF D$="X" THEN XFLAG = 1:DATUM$ =" ":GOTO 2670

DATUM$ = DATUMS$ + D$:IF LEN(DATUMS$)< >2 THEN 2670

PRINT:CON$ = DATUM$:GOSUB 3110:DATUM =SUM

IF SUM = — 1 THEN 2660

IF (ARRAY(PAGE*256 + BYTE) AND 255)< >255 AND XFLAG =0 THEN 2830
DATUM = DATUM OR 256:REM TAG LOCATION AS WRITTEN TO
ARRAY(PAGE *256 + BYTE) = DATUM:REM WRITE DATUM TO ARRAY
GOSUB 2320:REM DISPLAY WRITE TO ARRAY

IF BYTE =255 AND PAGE = PAGES— 1 THEN RETURN

GOSUB 2440:REM INCREMENT ADDRESS

GOSUB 2320:REM DISPLAY NEXT LOCATION
GOTO 2660

(continued)

FEBRUARY 1985 « BYTE

115

2830 PRINT:PRINT"< << << < ILLEGAL WRITE TO PREVIOUSLY PROGRAMMED LOCATION >>>>>>"
2840 RETURN

2850 REM =====z=z===z============================
2860 REM HELP ROUTINE

2880 GOSUB 2250:REM CLEAR SCREEN

2890 PRINT*To initialize the program you should enter the beginning page’

2900 PRINT‘address of the EPROM to be programmed. This value is used when”

2910 PRINT ‘printing to the screen and as a bias value in the write modes.”

2920 PRINT‘The following single-letter commands are used to control the'

2930 PRINT“modes of the EPROM programmer:”:PRINT

2940 PRINT" (I) INITIALIZE BASE-PAGE ADDRESS — base address is "';BIASS;"'00"
2950 PRINT" (V) VERIFY ERASURE” ;

2960 PRINT" (N) DISPLAY NEXT BYTE”

2970 PRINT" (P) DISPLAY PREVIOUS BYTE”

2980 PRINT* (O) OFFSET TO NEW PAGE AND BYTE”

2990 PRINT" (L) LOAD ARRAY FROM DISK”

3000 PRINT" (S) SAVE ARRAY ON DISK”

3010 PRINT" (W) ENTER BYTE WRITE MODE (use Q or H to exit, X to edit)”
3020 PRINT" (D) HEXADECIMAL DUMP TO SCREEN"

3030 PRINT" (B) ENTER ‘BURN EPROM’ MODE"

3040 PRINT" (H) ENTER HELP MODE (from any input statement)’
3050 PRINT" (E) EXIT PROGRAM"

3060 RETURN

3070 REM =====================================
3080 REM ***** CONVERT HEXADECIMAL TO DECIMAL *****

3090 REM ENTER WITH HEXADECIMAL STRING IN CON$, EXIT WITH DECIMAL VALUE IN SUM
3110 SUM=0 :

3120 FOR |=1 TO LEN(CONS$)

3130 X =ASC(MID$(CONS,(LEN(CONS$) + 1 =1),1))

3140 |F X<48 OR X>70 THEN SUM= - 1:|=LEN(CON$):GOTO 3190

3160 IF X>57 AND X<65 THEN SUM= — 1:I=LEN(CON$).GOTO 3190

3160 IF X<64 THEN X=X-48 ELSE X=X-55

3170 SUM=SUM + (X*16~(I-1))

3180 IF SUM>255 OR SUM<0 THEN SUM= -1

3190 IF SUM= -1 THEN PRINT"< < << < INPUT ERROR >>>>>"

3200 NEXT I:RETURN

3210 REM === ===ss=sss=c==c==cstcsccams=c=======
3220 REM WRITE A BYTE

3240 WPAGE =PAGE OR 128:REM SET WRITE PAGE (W/R=1)

3250 PRINT #3,CHR$(WPAGE);:REM SEND WRITE PAGE

3260 PRINT #3,CHRS$(BYTE);:REM SET WRITE BYTE

3270 PRINT #3,CHR$(DATUM);:REM DATA TO WRITE

3280 PRINT #3,CHR$(STROBE);:REM WRITE STROBE

3290 FOR DEL =1 TO DELAY:NEXT DEL:REM WRITE DELAY

3300 RETURN

30 REM ===========s=ssc==m==sctcc=ccmmssmc=s=====
3320 REM READ A BYTE

3340 PRINT #3,CHR$(PAGE);:REM SET READ PAGE (W/R=0)

3350 PRINT #3,CHR$(BYTE);:REM SET READ BYTE

3360 PRINT #3,CHR$(DUMMY);:REM DUMMY DATA SENT

3370 PRINT #3,CHR$(STROBE);:REM READ STROBE

3380 RDATA =ASC(INPUTS$(1,#3)):REM INPUT DATA

3390 RETURN

3400 REM ========s=======cc—c=c====zczc========s=====

3410 REM VERIFY ERASURE

3430 PRINT:PRINT“VERIFYING THAT EPROM IS ERASED":PRINT

3440 BYTE=0:PAGE=0

3450 FOR PAGE=0 TO PAGES-1:V$=" OK”

3460 FOR BYTE=0 TO 255

3470 IF (ARRAY(PAGE*256 + BYTE) AND 255) =255 THEN 3490

3480 V§="<<<<<< NOTERASED >>>>>>"

3490 NEXT BYTE:PRINT"PAGE'";PAGE;V$

3500 NEXT PAGE

3510 BYTE =0:PAGE =0:RETURN

3520 REM =====================z=====z—=z==========
3530 REM DUMP TO SCREEN

3550 GOSUB 2250

3560 FOR LN=1 TO 16

3570 PAGE$ =RIGHTS$("'0" + HEXADECIMALS$(BIAS + PAGE),2)

3580 BYTE$=RIGHTS$("'0” + HEXADECIMALS$(BYTE),2)

3590 PRINT USING'\\"";DPAGES$;DBYTES$;"": '

3600 FOR D=1 TO 16

3610 DDATA$ = RIGHT$("'0"" + HEXADECIMALS$((ARRAY(PAGE *256 + BYTE) AND 255)),2)
3620 PRINT USING"\\”’;DDATAS;

3630 IF PAGE = PAGES -1 AND BYTE=255 THEN D=16:LN=16

3640 GOSUB 2440:IF BYTE MOD 16=0 THEN PRINT:D=16

3650, NEXT D

3660 NEXT LN:PRINT:PRINT

3670 IF PAGE=PAGES-1 AND BYTE=255 THEN PRINT"<<<<<< END OF EPROM >>>>>":RETURN
3680 PRINT"ENTER (C) TO CONTINUE OR (Q) TO EXIT DUMP —> ";:IKEY$ = INPUT$(1)
3690 IF IKEY$>="a" AND IKEY$< ="Zz" THEN IKEY$=CHR$(ASC(IKEY$) AND 95)

116 BYTE ¢ FEBRUARY 1985

3700
3710
3720
3730
3740
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3890
3900
3910
3920
3930
3940
3950
3960
3980
3990
4010
4020
4030
4040
4050

PRINT IKEY$:PRINT:IF IKEY$="C" THEN 3560

IF IKEY$ =""H" THEN HFLAG = 1:RETURN

IF IKEY$="Q" THEN RETURN ELSE 3680

REME S -1 e E e e e e e
REM SET BIAS ADDRESS

GOSUB 2250

BIAS$ = ":PRINT:PRINT“ENTER BASE-PAGE ADDRESS IN HEXADECIMAL (hh) —> "
B$ = INPUT$(1):PRINT B$;

IF B$>="a" AND B$< ="z" THEN B$=CHR$(ASC(B$) AND 95)

IF B$="H" THEN HFLAG =1:RETURN

IF B$="Q" THEN PRINT:RETURN

BIAS$ = BIASS + B$:IF LEN(BIAS$)< >2 THEN 3780

PRINT

CON$ =BIAS$:GOSUB 3110:BIAS = SUM:PRINT:PRINT:IF SUM= -1 THEN 3770

PAGE =0:BYTE = 0:BP$ = BIAS$ + “'00"":GOSUB 2250:RETURN

RENI DS S e e e R s e
REM READ EPROM TO ARRAY

PAGE =0:BYTE = 0:GOSUB 2250

GOSUB 3340

ARRAY(PAGE *256 + BYTE) = RDATA:IF BYTE =0 THEN PRINT'READING PAGE’’;PAGE
BYTE = BYTE + 1:IF BYTE=256 THEN PAGE =PAGE + 1:BYTE=0

IF PAGE< =PAGES -1 THEN 3900

PRINT:PAGE = 0:BYTE = 0:RETURN

REM o R e e S
REM WRITE ARRAY TO EPROM

GOSUB 2250

PRINT" < < < < << BURN ALL PROGRAMMED BYTES 7? >>>>>>"
PRINT"TYPE (Y) TO PROGRAM EPROM"”

PRINT"(Q) TO RETURN TO PROGRAM"

PRINT*(H) TO DISPLAY HELP MENU"

PRINT*(N) TO RETURN TO PROGRAM FROM ‘BURN’ MODE”

PRINTTO ABORT PROGRAM IN ‘EXIT' MODE."

4060 PRINT:PRINT"ENTER SELECTION —> "';:IKEY$ =INPUTS$(1)

4070 PRINT IKEY$

4080 IF IKEY$> ="a" AND IKEY$< ="2" THEN IKEY$=CHR$(ASC(IKEY$) AND 95)
4090 IF IKEY$="N" THEN RETURN

4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4240
4250
4260

IF IKEY$=‘"H" THEN HFLAG = 1:RETURN
IF IKEY$="Q" THEN PRINT:RETURN
IF IKEY$< >*Y"" THEN 3990
FOR ADD=0 TO DSIZE

DATUM = ARRAY(ADD):IF DATUM <256 THEN 4190

DATUM = DATUM AND 255:BYTE = ADD MOD 256:PAGE = (ADD - BYTE)/256

PRINT “BURNING ";:GOSUB 2320

GOSUB 3240:GOSUB 3340

IF RDATA< >DATUM THEN PRINT “'< < < < < < DATANOT VERIFIED >>>>>>"
NEXT ADD
PRINT:BYTE = 0:PAGE = 0:RETURN
REM =====================================
REM SAVE ARRAY IN DISK FILE
GOSUB 2250:PRINT*THE DISK FILE CREATED HERE WILL CONTAIN ALL THE DATA”
PRINT“PRESENTLY CONTAINED IN YOUR EPROM MEMORY IMAGE AND”
PRINT“WILL BE ASSIGNED THE FILE EXTENSION ‘PRM'.”

4270 PRINT"THE FOLLOWING IS A LIST OF EXISTING DISK FILES WITH"

4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540

PRINT“THE FILE EXTENSION ‘.PRM"."”:PRINT:PRINT
FILES ““*.PRM’:PRINT:PRINT
INPUT"ENTER THE FILENAME OF YOUR NEW DISK FILE > " ,FILENAME$
IF FILENAME$ ="H" OR FILENAME$ = “h" THEN HFLAG = 1:RETURN
IF FILENAME$ ="Q" OR FILENAMES$ = "q"” THEN RETURN
OPEN "'O”,#1 FILENAMES$ + ““.PRM"’
FOR |=0 TO DSIZE - 1:PRINT #1,(ARRAY(l) AND 255);
IF | MOD 256 =0 THEN PRINT “SAVING PAGE";/256
NEXT |:CLOSE #1:RETURN
REM ================z=z==z=z=z=c===============
REM LOAD ARRAY FROM DISK
GOSUB 2250:PRINT:PRINT“THE FOLLOWING IS A LIST OF FILENAMES WITH THE FILE"
PRINT“EXTENSION ‘.PRM’":PRINT:PRINT
FILES “*.PRM":PRINT:PRINT
INPUT"ENTER A FILENAME FROM THE LIST ABOVE —>" FILENAMES$
IF FILENAME$ = "'"H"’ OR FILENAMES$="h"" THEN HFLAG = 1:RETURN
IF FILENAMES$ ="Q" OR FILENAMES$="q” THEN RETURN
OPEN """ ,#1,FILENAMES + *.PRM"
FOR I=0 TO DSIZE - 1:INPUT #1,DATUM
IF | MOD 256=0 THEN PRINT “LOADING PAGE";/256
IF DATUM =255 OR DATUM = (ARRAY(l) AND 255) THEN 4560
IF ARRAY(l)< >255 THEN 4520
ARRAY(l)= DATUM OR 256:GOTO 4560
PRINT" < < < << < ILLEGAL INPUT DATA FROM FILE >>>>>>"
PRINT" < < < << < ATTEMPT TO WRITE OVER PROGRAMMED LOCATION > > > >>>"
PRINT" < << < << PROGRAM HAS BEEN ABORTED >>>>>>"

(continued)

FEBRUARY 1985 « BYTE

117

4550 CLOSE#1:END

4560 NEXT I:CLOSE #1:RETURN
4570 REM
4580 REM DISK-ERROR ROUTINE

4600 IF ERR=53 AND ERL =4290 THEN PRINT"‘NO PRM FILES":RESUME 4300

4610 IF ERR=53 AND ERL =4420 THEN PRINT*NO PRM FILES":GOTO 4670

4620 IF ERR=53 AND ERL =4460 THEN PRINT"UNKNOWN FILE":GOTO 4670

4630 IF ERR=61 THEN PRINT “DISK FULL":GOTO 4670

4640 IF ERR=57 THEN PRINT"‘RESET EPROM PROGRAMMER":GOTO 4670

4650 IF ERR=67 THEN PRINT*UNKNOWN FILENAME, DON'T TYPE ‘.PRM'":GOTO 4670

4680 IF ERR=57 THEN RESUME 0
4690 HFLAG =1

4700 RESUME 2110

4710 ON ERROR GOTO 0

4720 REM
4730 REM CONFIGURATION ROUTINE

4790 IF ESIZE=1 THEN RESTORE 4750
4800 IF ESIZE=2 THEN RESTORE 4760
4810 IF ESIZE=3 THEN RESTORE 4770
4820 |F ESIZE=4 THEN RESTORE 4780

4850 FOR |=4 TO 15
4860
4870 NEXT |

4890 FOR I=4 TO 15

4930 LOCATE 4,38

4990 A$=INPUTS$(1):RETURN

4660 CLOSE#1:PRINT “UNKNOWN ERROR #";ERR;“IN LINE #";ERL
4670 PRINT"PRESS ANY KEY TO CONTINUE —> ";:iIKEY$=INPUT$(1):PRINT

4750 DATA 255,255,196,255,196,255,196,255,255,196,255,196
4760 DATA 026,196,255,255,255,196,255,196,196,255,255,196
4770 DATA 196,255,196,196,255,255,196,255,196,255,255,255
4780 DATA 196,255,196,196,255,255,196,255,196,255,196,255

4830 LOCATE 1,22:PRINT "“JUMPER CONFIGURATION"
4840 LOCATE 8,30:PRINT CHR$(201);CHR$(205); CHR$(205);CHR$(187)

LOCATE 1,30:PRINT CHR$(199);"* ";CHR$(182);"'J";| -3
4880 LOCATE 16,30:PRINT CHR$(200);CHR$(205);CHR$(205); CHR$(188)

4900 READ JUMPER
4910 LOCATE |,31:PRINT CHR$(JUMPER);CHR$(JUMPER)
4920 NEXT |

4940 IF ESIZE =2 THEN PRINT“NOTE: INSTALL J1 FOR 2732A EPROMSs"
4950 LOCATE 18,20:PRINT “If jumpers are not properly configured”

4960 LOCATE 19,20:PRINT ‘“‘shut off programmer and set jumpers,”’

4970 LOCATE 20,20:PRINT ‘“‘then turn programmer back on.”

4980 LOCATE 22,20:PRINT “‘Press any key to continue —> "';

created with a SAVE command in the
program can also be used to enter the
data.

A help routine is provided in the
program to assist the user during the
operation of the programmer. It con-
sists of a menu that contains all the
choices available in the driver pro-
gram. The routine can be entered
from any location in the program by
typing the letter H. A screen-dump
routine and an EPROM erasure-veri-
fication routine are also provided.

IN CONCLUSION

The serial-port EPROM programmer
isn't designed for volume program-
ming. It's intended to be a cost-

118 BYTE * FEBRUARY 1985

effective, transportable programmer
that doesn’'t become outmoded with
each new computer and system bus.
You'll also find, cleverly embedded in
every programming cycle, enough
time for you to take a well-deserved
coffee break.

CIRcUIT CELLAR FEEDBACK
This month's feedback begins on
page 393.

NEXT MONTH

I've always been intrigued by home
control and electronic messaging. In
March, TI'll tackle the subject in
earnest, beginning with a Touch-Tone
Interactive Message System. m

Special thanks to Larry Bregoli for his software
expertise.

Editor’'s Note: Steve often refers to previous
Circuit Cellar articles. Most of these past ar-
ticles are available in reprint books from
BYTE Books, McGraw-Hill Book Company,
POB 400, Hightstown, NJ 08250.

Ciarcia's Circuit Cellar, Volume 1 covers articles
that appeared in BYTE from September 1977
through November 1978. Volume 1l covers
December 1978 through June 1980. Volume
11l covers July 1980 through December 1981.

Volume 1V covers January 1982 through June:

1983.

To receive a complete list of Ciarcia’s Cir-
cuit Cellar project kits, circle 100 on the
reader-service inquiry card at the back of
the magazine.

&

