NIBBLING AT APPLESOFT

Errors Without Messages

by Leslie R. Schmeltz
3224 Magnolia Ct.
Bettendorf, IA 52722

ell, Mr. Doom and Gloom is back! If
Wyou recall our last two discussions,

error messages and their causes were
described in some detail. This time we're
going to shift our emphasis to a much more
interesting process — sort of a graduate pro-
gram in software sleuthing! As anyone who's
ever written a program will tell you, there are
times when things aren't happening as they
were intended. No error messages appear in
spite of the fact that processes or file manipu-
lations may not be doing what you thougnt
they would. Under othercircumstances. error
messages can be made to work for, instead of
against, you. Eliminating or controlling errors
will be our major topic of discussion in this
instaliment of "Nibbling At Applesoft”.

We will introduce the concept of error trap-
ping and outline some of the procedures for
effective use of error trapping. Next, error
handling will be discussed. We will also be
looking at some of thecommands and proce-
dures necessary to check your programs for
proper operation. Finally, we'll outline a few
ofthe more common programming tricks that
will help you avoid process errors. Sounds
pretty busy, doesn'tit? Well, let's get right to
work

ERROR TRAPPING

The most obvious way to solve problems
with errors is simply not to let them occur.
While that may be easiersaid thandone, there
are some things you can include in your pro-
grams to prevent errors from sneaking in.
Let's say, for instance, that you are using an
INPUT statement for the purpose of soliciting
a number between one and ten from the key-
board. How can you prevent someone from
trying eleven? Easy — watch?

10 PRINT “PRESS A NUMBER BETWEEN
1AND 10"

20 INPUT A

30 IF A > 10 THEN PRINT "THAT'S MORE
THAN 10, DUMMY!": PRINT “TRY IT
AGAIN.: GOTO 10

50 PRINT “THANKS, | NEEDED THAT!"

60 END

So now we have a program that doesn't do
anything (examples really don't have to, you
know) except thank us for a proper value and
chide us if the number inputted is greater
than 10 You just know some wise guy will try
typing zero or a minus number, right? As it
stands, the program will thank him kindly and
go on about its business. Let's expand the
error trapping a little and try to catch the
zeroes and minus numbers:

10 PRINT “PRESS A NUMBER BETWEEN
1AND 10"

20 INPUT A

30 IF A >~ 10 THEN PRINT “THAT'S
MORE THAN 10, DUMMY!": PRINT
“TRY IT AGAIN.”: GOTO 10

40 IF A <1 THEN PRINT “THAT'S LESS
THAN 17 PRINT “TRY IT AGAIN.™
GOTO 10

50 PRINT “THANKS, | NEEDED THAT!”

60 END

Try typingand RUNning these short exam-
ples. Dothey indeed trap the potentialerrors?
Can you think of any other paossibilities for
input that the error trapping doesn’t cover?
Can we streamlinethe error trapping? Let's try:

10 PRINT “PRESS A NUMBER BETWEEN
1AND 10"

20 INPUT A

30 IFA<10RA ™10 THEN PRINT
“THAT'S NOT BETWEEN 1 AND 10.™
PRINT “TRY IT AGAIN.™: GOTO 10

40 PRINT “THANKS, | NEEDED THAT!"

50 END

The preceding routine does the same job
buteliminatesoneline by checking for values
of A that are either too low or too high in a
single line. Notice that line 30 will execute
onlyifthe value of Ais outside the acceptable
limits — otherwise the program proceeds
directly toline 40. What if the same wise guy
tried to input a letter or control character
instead of a number? Applesoft will come to
yourrescue here since A must be numeric, so
there's no need to trap for those errors.
Granted, this is a simple example, but the
principle holds true no matter how compli-
cated your specific application. Let's take a
slightly more involved example. We will be
using each of three possible responses for a
specific action. We will, however, still want to
trap out any erroneous responses to our
prompt:

10 PRINT “PRESS RTN TO EXIT, ESC
TO CONTINUE": PRINT “OR 'P' TO
PRINT"

20 GET Z$

30 IF Z$ = CHRS(13) THEN END

40 IF Z$ - “P" THEN GOTO (PRINT
ROUTINE)

50 IF Z$ < > CHR$(27) THEN GOTO 20

60 REM BALANCE OF PROGRAM

In the preceding example, notice we have
examined the response (Z$) to see whether or
notitisthe RETURN key (CHR$(13)) or P.Ifit
is neither, then it must be either an error or
ESC (CHR$(27)). Errortrapping in this fashion
allows you to check multiple responses and
initiate desired program actions simultane-
cusly. There are many situations where you
want to check the accuracy of a keyboard
response. By properly structuring the error
trapping routine, one can check for almost
any possible combination of responses. Sim-
ple error trapping in the INPUT or GET rou-
tine will often save hours of grief later in the
program’s operation (or lack of operation, as
the case may be!).

Let's consider another example. Suppose
your program allows forthe manipulation of a
particular string data field of up to 10 charac-
ters. Simple error trapping must be used in
the input to be sure the string does not
exceed that length

10 PRINT “TYPE YOUR FIRST NAME."
20 PRINT “(10 CHARACTERS OR LESS)”
30 INPUT NS

40 IF LEN(NS) = > 11 THEN GOTO 20

50 BALANCE OF PROGRAM

Thisroutine assures you that any response of
more than 10 characters willresultin another
(10 CHARACTERS OR LESS)" prompt.
Notice that we are recycling the original
length prompt rather than using a separate
message. As an alternative approach to error
trapping, settingup original program prompts
fordual use is a very efficient use of program
lines. You could, if desired, add a separate
error message and direct the user to TRY
AGAIN or ABBREVIATE IF NECESSARY

Of course, there are other situations where
error trapping is used. Limiting the range of
values for calculations, checking for possible
errors in data fields and eliminating redun-
dancy in mass storage files are but a few of
the possibilities. The goal of any error trap-
ping operation is to catch potential problems
before they are allowed to occur. This is
opposed to error handling (which we will dis-
cuss a little later) and might be called the
proverbial "ounce of prevention” rather than
the “pound of cure”. The process of error
trapping is not really all that complicated
you just need to think of ALL the possible
error responses and anticipate them in your
programming'

While trapping every possible error in a
program is a worthy goal, itis rarely achieved
by mostprogrammers. By thinking in terms of
error possibilities and “smoke testing” your
programs with inaccurate responses, you will
have gone along way in reducing the frustra-
tion of having to deal with the same errors
time after time. Just for the experience, try
“bombing” one of your favorite programs
with inappropriate responses to prompts. For
each successful “bomb™ of the program, see
if you could add some error trapping that
would eliminate the problem. Both your
programming skills and the program under
consideration will benefit greatly from this
process.

USING ERROR TRAPPING EFFECTIVELY

As promised earlier, we will outline a few of
the principles of effective error trapping. No
doubtyou will be able to add a few more that
have worked foryou, so let’s consider this list
as minimal.

1. In order to error-trap a routine. you must
be thoroughly familiar with the type of
response expected by the program.

2. Error trapping procedures must account
for the full range of possible responses
that can be reasonably expected from the
user.

3. Messages generated by error trapping
procedures should give the user a clear
picture of why a specific response was
incorrect and another chance to respond
appropriately.

4. The end result of error trapping proce-
dures is the prevention of program or proc-
ess errors that will result in destruction
of data.



5. Errortrappingroutines should be invisible
to the program user unless an inapprop-
riate condition is encountered.

6. Routines used for error trapping should
beas simpleand efficientas possible. You
cannot cover every possible contingency;
be content to handle the vast majority!

ERROR HANDLING

If your error trapping procedures are up to
par, there will not be many unintentional
errors in your programs. Unintentional? Say
what? You mean there are times when errors
are intentional, even desirable? YUP! Let me
explain — error conditions often indicate the
lack of completion of a process or the pro-
gram's inability to function because of a
resolvable problem. Under normal conditions,
error conditions evoke one of the standard
error messages contained in Applesoft and
the Disk Operating System. Once the error
message is printed, all program operations
cease.

If we interrupt the normal process of get-
ting an error message just prior to program
termination, some alternative method must
be provided to resolve the problem before
execution can continue. This alternative
method iscalled Error Handling, which seems
logical enough since that is exactly what we
are doing. Error handling provides some
means of resolving simple problem errors
without loss of data

Earlier, we learned one method of error
handling — typing RUN and re-running the
program after the error condition had been
remedied. As you know, typing RUN destroys
any data that may have been generated by the
program, unless it has been saved prior to the
error condition. Is there a better way? You bet
your bippy there is!

When a program error occurs, the Apple
sets the value of decimal memory location
222 equal to the number indicating which
error message will be printed. The useris free
to set up a command that will intercept this
normal process and handle the error differ-
ently than simply stopping program execu-
tion. There are some inherent dangers in set-
ting up your own error handling routines, as
we will see a little later.

AN EXAMPLE

Before we get too specific, why don't we
take alook at a real live error handling routine.

Let’s set up a scenario and see how we can
program it. Your program is designed to
create data files for any of several categories
of items. If there is already a file on yourdisk
by that name, no new one should be created.
We also want to know when the storage disk
is full so that the user can be prompted to
insert a fresh data disk in the drive. Any other
error should indeed terminate program oper-
ation. How do we set this up? Something like
this:

10 D$=CHRS$(4): REM CHR$(4) IS CTRL-D
20 ONERR GOTO 100

30 INPUT “NAME OF DATA FILE";FN$

40 PRINT DS; “VERIFY"; FN$

60 END

100 Y = PEEK(222): REM READ ERROR
CODE

110 IF Y = 6 THEN PRINT “THERE IS NO
FILEBY THAT NAME ON”: PRINT “THIS
DISK. OK TO CREATE ONE?”: GOTO
(file creation routine)

120 IFY = 9 THEN PRINT “THIS DISK IS
FULL. PLEASE INSERT A": PRINT
“FRESH DATA DISK IN THE DRIVE
AND": PRINT
“TRY AGAIN.”: GOTO (delete file,
change disk and try again routine)

130 POKE 216,0: REM RESET THE ERROR
FLAG.

140 PRINT “PROGRAM OPERATION
TERMINATED BY ERROR.”

150 END

This routine, as you can see, looks consid-
erably different than the error trapping var-
ety outlined earlier. Lines 10 through 60 are a
simple program which asks you to type a file
name and checks on the disk to see whether
ornotthefileis present. Ifan erroris encoun-
tered anytime after line 20 is executed, the
program will branch to line 100 instead of
printing an error message. In the error han-
dling routine, we have provided for only two
ofthe more likely error possibilities — file not
found or disk full. Error handling routinescan
be as simple or elaborate as you like.

If error code 6 is detected in memory loca-
tion 222, we can assume that the file name
typed was not found on the disk. In that case,
a routine to either change the name or create

a file by that name must be provided. If. dur-
ing the File Creation portion of the program.
the disk is found to be full, a routine to delete
the partial file from the current disk and
create acomplete file onanother disk must be
provided. In this example, any other error
code will display "PROGRAM TERMINATED
BY ERROR™ and the program will end.

If you remember the wide range of possible
error messages we have discussed in the last
couple of installments of this series, it will
become quite apparent that you would prob-
ably not careto tryand handle all the possible
errors for any specific program. Most error
handling routines try to cover a few of the
more likely possibilities and let the standard
error messages appear for the rest.

CAVEATS FOR USING ERROR HANDLING
ROUTINES

Asyou have probably noted, error handling
can be a powerful programming tool if prop-
erly used. On the other hand, it can be a pain
inthe neck if problems are encountered. This
process, likeso many othersin programming,
is best learned by experimentation and expe-
rience. | will, however, give you a few caveats
to keep you out of serious trouble

1. An ONERR GOTO command sets the line
number to which the program will branch
regardless of where an error occurs. On
encounteringan error, program execution
continues as directed by the most recently
executed ONERR GOTO statement.

2. An ONERR GOTO command MUST be
executed prior to an error being encoun-
tered If program execution is to continue
rather than terminate in an error state

3. A code representing the nature of the
errorencountered is contained in memory
location 222 (decimal). To see which of
the error codes is contained there, type
PEEK (222). Some of the more common
error codes — (0)-NEXT WITHOUT FOR,
(5)-END OF DATA, (6)-FILENOTFOUND,
(16)-SYNTAX ERROR and (254)-BAD RE-
SPONSE TO INPUT STATEMENT.

4. Error handling routines for problems en-
countered in FOR — NEXT loops must
restart the loop after the error is resolved
Ifyouattempt to re-entertheloop in prog-
ress, a NEXT WITHOUT FOR error will
halt program execution

5. When handlingerrors encountered during
the execution of a subroutine, return to
the GOSUB statement after resolving
the error. Failure to do this will result
in the RETURN WITHOUT GOSUB error
message

6. With a great deal of caution, you may use
RESUME at the end of an error handling
routineto return program execution tothe
beginning of the statement where an error

ccurred. Be careful, however, because in
certain cases RESUME can place your
program in an infinite loop

7. Don't forget to end your error handling
routines with POKE 216.0 to restore nor-
mal operation of the error message mech-
anism (if youwanttodisable the currently
active ONERR)

8. As we saw in the sample, error handling
routines must include provisions to iden-
tify AND resolve the problems noted. Pro-
gram execution must be resumed at an
appropriate point to avoid further difficul-
ties.

Do you get the impression that you have
just been presented with the universal solvent
and have been told to come up with a con-
tainer to hold it? Error handling routines can
be a tremendous help in keeping the user of
your programs out of trouble, but they pre-
sent a whole unique series of problems of
their own. The primary requirement for using
error handling is being able to plan for all of
the contingencies that may be encountered
during the execution of aprogram, and setup
routines that will deal with them.

WHO'S ON FIRST?

Remember the classic comedy routine that
asked that same question? Have you ever
heard of it? Maybe your grandparents could
fill you in! Although you may not be old
enough to remember Abbott and Costello,
the confusion created by pertectly logical
answers to questions has a lot of application
in computer programming. We often get cor-
rect answers to the questions we are asking
the computer — it's just that we really don't
want to know what we are asking. Right
answer, wrong question!



Programmers are often faced with finding
out why certain results are being obtained
from a particular program or routine. There
may not be an error in the program lines, yet
unsatisfactory answers are being obtained.
That's about the time we begin to ask anew,
“"Who's On First?”

TRACE/SPEED

Applesoft incorporates several commands
to help you see the operations of a program
as they are taking place in order to solve these
sticky types of problems. TRACE, which can
be used in either immediate or deferred exe-
cution modes, causes the number of each line
to be displayed on the screen as it is exe-
cuted. Although this may mess up some of
your pretty screen formats, knowing the line
number where an error occurs can be a big
help. To turn off the TRACE provision, type
NOTRACE. Remember SPEED= that we dis-
cussed sometime ago? Keep in mind that itis
often easier to see what 1s happening in a
program if you slow things down a bit (or a
lot). To use the SPEED= command, just type
it (while you are in immediate mode) followed
by a number between 0 (slowest) and 255
(normal speed). The combination of TRACE
and SPEED= can really drag things out to the
point where you can follow the program step
by step through its operations.

MON/NOMON

Disk operations can be monitored through
the use of the MON (short for monitor. you
know) and NOMON commands. A little more
versatile than TRACE, MON lets you select
any combination of three parameters fo-
watching — C (Commands to the disk),
(Input from disk files) and O (Output to the
disk) The format for the commands is MON
C,1,0 orNOMONC, 1,0 (if allthree parame
ters are desired). The C,1 or O may bein any
order in the command. At least one of the
parameters s required or else the commanc
isignored. If MON is in effect and you were
reading five items from DATA FILE, you
would see the commands and data on the
screen as they are executed:

OPEN DATA FILE
READ DATA FILE
75

3.25

77.6

57.9

421

CLOSE DATA FILE

As you cansee, the value of having both the
commands and data displayed on the screen
is tremendously valuable for debugging pro-
grams. Used in conjunction with TRACE, the
MON command aliows you to see exactly
what your program is doing during each step.
Try these commands with your own pro-
grams. What you see may surprise you!

AVOIDING PROCESS ERRORS

Earlier in this article, we referred to th¢
prospect of avoiding process errors in the
execution of your programs. What are proces:
errors? Well, | like to think of them as “little
boo-boos” instead of major programming
problems. They are usually the result of some
carelessness on the part of the programmer
and are almost always difficult to find. Most
process errors do not show up with error
messages because they are probably correct
in terms of syntax and punctuation. Unlike
most errors, these little jewels just surface
whensome bizarre results are being obtained
from the program.

The best way to avoid process errors is, of
course, not to make any mistakes in writing
your programs. Simple? Yup! Possible? Doubt-
ful. I really have never met a programmer
who, at least once or twice, has not made
some errors. There are some areas where
mistakes are more likely to creep in than oth-
ers. | would like, as a final dying gasp in this
whole unpleasant discussion, to present a
few of the areas where | have found process
errors in some of my own programs. No doubt
we could all expand this list, but let's use it as
astarting point anyway.

1. Parenthetical grouping of mathematical
operations. | usually havetoend up count-
ing the left and right parentheses to be
sure the numbers are equal. It helps if you
play computer and try evaluating some of
your expressions to be sure the desired
results are being obtained.

2. Rounding numbers. There is a quirk in
Applesoft that adds a .000001 to the
rounded results of some calculations.
There are even more quirks in my tech-
niques for rounding numbers!

3. Arrays, particularly when used in conjunc-
tion with tape storage, can be confusing. It
is often easier to confine your arrays to
one or two dimensions unless you have a
mind that's organized like a Rubik's Cube.

4. Variable assignment and inadvertent reas-
signment during the course of program
execution Do you use FOR | =0to 10 to
set upa FOR — NEXT loop? Me too! Most
of the array examples in the Applesoft

manual also designate elements by the
same variable, i.e.. A(l). Confusing? Yup
Eventhough| try notto use the same varn-
able,every onceinawhile | find thatsame
variable (1) used somewhere else in the
same loop {mostofteninconjunction with
array elements).

5. Reserved words in variable names. Really
bizarre results can be obtained il you
happen to intrude on-the list of reserved
words for your variable names. The best
way to avoid this problem - study the list
of reserved words in the Applesoft manual!

6. Disk commands MUST be preceded by a
carriage return. Thislittle requirementcan
give you fits if you try to use disk com-
mands after a GET prompt. The usual
response is for the program to print the
disk command on the screen, just as
though MON C was in eftect. Solution?
Precede each series of disk commands by
PRINT:. For example: PRINT: PRINT
CHRS$(4). "BLOAD BINARY". (Ittook mea
long time to catch on to this one).

7. Punctuation and syntax are particularly
important in disk commands. You can get
some very interesting results by combin-
ing several disk commands on a line and
not using the proper combination of quo-
tation marks!

We could goon and on with thisdiscussion,
but | think you get the point. Every pro-
grammer, whether beginner or expert, needs
to compile a mental list of areas where prob-
lems are likely to surface in his programs.

Each and every item on that hst should
receive extra checking during the process of
debuggmg anew program. Ifyou are aware of
potential problem areas, debuggingand edit-
ing becomes a much simpler process

SUMMARY

In this installment, we have discussed some
of the positive errors which may be eliminated
or rectified without the loss of program func-
tion and data that may have been generated.
Although avoiding errors altogether i1s cer-
tainly a worthwhile goal. it is rarely achieved
in everyday programming efforts. Knowing
how to trap errors, handle the more common
ones within a program and outline areas
where you are likely to make errors will save
countless hours of debugging in the future

MAJOR POINTS:
Error Trapping.

1. Most often used to detect inappropriate
responses to INPUT or GET statements
within a program.

2. May be used to check multiple responses
and initiate program operations simultane-
ously

3. Other areas where error trapping may be
used include limiting the range of values
for calculations, checking for possible
errors in datafields and eliminating redun-
dancy in mass storage files.

4. In order to successfully error trap your
programs, you need to think of all the pos-
sible error responses and provide forthem
in your program.

5. Oneofthe bestwaystosharpen yourerror
trapping skills is to intentionally try to
“bomb” one of your own programs, and
then eliminate the error with some simple
error trapping procedures.

Using Error Trapping Effectively.

1. You must be familiar with the type of
response expected by the program.

2. Errortrapping proceduresshould account
for the full range of possible responses
that can be reasonably expected from the
user.

3. Messages generated by error trapping
procedures should be clear and self-
explanatory to the user.

4. Error traps should remain invisible during
program execution unless an error condi-
tion is encountered.

5. Keep your routines for error trapping as
simple and efficient as possible.
Error Handling.

1. Provides a means of identifying and recti-
fying errors that occur during the execu-
tion of a program.

2. Interrupts the normal process used by
your Apple to handle errors.

=,

Should cover the most likely error possi-
bilitiesand provide for the rest as a group.

4. Can be a powerful programming tool if
properly used, a very large pain in the
neck if not!

Using Error Handling Effectively.

1. An ONERR GOTO statement must be
executed prior to an error being encoun-
tered If error handling, rather than pro-
gram termination, is to take place.

Program execution branches to the line
number specified by the most recently
executed ONERR GOTO statement when
an error surfaces.

»



3.

o

A code representing the nature of the
error is contained in decimal memory
location 222. This code may be examined
through the use of a PEEK (222) command.

. Error handling that occurs in the process

of a FOR — NEXT loop must restart the
loop

. Errors encountered and handled during

the operation of a subroutine must return
program execution to the GOSUB state-
ment.

If used with appropriate caution, RESUME
will return program execution tothe begin-
ning of the statement where an error
occurred.

Inorder toresetthe normal error handling
mechanisms in your Apple, use POKE
216,0.

. Error handling must be able to identify

AND resolve any problems noted, and then
return program execution to the proper
point to avoid further errors.

Watching Your Program Operate.

1.

Line numbers of Applesoft program lines
may be displayed during program opera-
tion through the use of the TRACE com-
mand. .

. TRACE is disabled by typing NOTRACE.

Either command may be used in deferred
or immediate execution modes.

. SPEED - may be used to slow down the

display processes associated with a pro-
gram. This will, in effect, slow down pro-
gram operations enough to help debug
some of the problems.

. Disk operations may be monitored with

the MON command. The paramelers C
(Disk commands), | (Input from the disk)
and O (Output to the disk) may be speci-
fied.

. The MON capabilities selected may be

disabled individually or as a group by
using the NOMON command with the
same parameters.

Process Errors.

1.

Are minor errors that do not surface dur-
ing the debugging of a program because
they have correct syntax and punctuation.

Often the firstindication of a process error
is some bizarre result coming from the
program.

3.

Every programmer needs to compile a
mental list of areas where he is likely to
make process errors and check those
areas carefully in his programs.

. Some of the process error problem areas

mentioned by the author include paren-
thetical grouping formathematical opera-
tions, rounding numbers, arrays, variable
assignments, reserved words in variable
names, disk commands, punctuation and
syntax.

WHAT'S NEXT?
Have you had enough of this gloomy dis-

cussion about errors and problems? | cer-
tainly have! Let's get back on a happier track
next time and discuss some positive pro-
gramming fora change.l'm goingto keepyou
in suspense until then, but rest assured you
will enjoy the topic a heck of a lot more than
what we have been talking about for the last
couple of installments. See you then!



