

DOUBLEDOS

COVER FEATURE

eep both DOS 3.3

and ProDOS in memory simultaneously, and switch back and
forth between them with a single command. DoubleDOS lets

you do it!

ince the release of ProDOS. Apple users have had the

choice of two standard operating systems. I have had an

Apple I for cight years, and have grown used to DOS
3.3. However, the power of ProDOS cannot be ignored, so I switch
between the two. [used CONVERT to transfer the files that 1 use
most often to ProDOS. but CONVERT has a major flaw: it cannot
transfer random text files. It also takes a lot of time to set up and
use, especially if you just want to transfer one file.

DoubleDOS keeps both DOS 3.3 and ProDOS in memory at once,
and lets you switch between them with a single command. You can
load a file under DOS 3.3, switch to ProDOS, and save it on a
ProDOS disk. You can load a ProDOS file, and save it on a DOS
3.3 disk. If you have two drives, you don’t even have to switch
disks. Even random access files can be moved easily from one oper-
ating system to the other. DoubleDOS will save you time and
aggravation,

The only limitation is available memory. When you have both
DOS 3.3 and ProDOS loaded, there is 25K of free memory left
This is enough for many programs, but you'll have to use CON-
VERT for programs larger than 100 sectors (50 blocks).

USING THE PROGRAMS

Before you can install DOS 3.3 and ProDOS together, you must
create a new version of DOS 3.3 using the DOSLOAD program.
To do this, type RUN DOSLOAD. You'll need a copy of your
DOS 3.3 system master disk. A regular DOS 3.3 disk won't do:
it must be the system master. When you run DOSLOAD, you are
prompted to insert the system master. Remove the ProDOS disk
from the drive and insert the system master in the same drive. Press
Return. DOS 3.3 is loaded and relocated.

You are then prompted to insert the ProDOS disk. Remove the
DOS 3.3 system master., and reinsert the ProDOS disk. DOS 3.3
is then saved on your disk under the name DOS38.5K.

Now, you can run the LOADER program (type RUN LOADER)
and your system will be configured to contain both DOS 3.3 and
ProDOS. You can switch to DOS 3.3 from ProDOS by typing DOS.
You can switch from DOS 2.3 to ProDOS by typing PRODOS.
IU's as simple as that.

The only files you nced to install DOS 3.3 are LOADER,
PATCH.0, PATCH.1 and DOS38.5K. If you rename LOADER
to STARTUP, you can boot the disk and have both ProDOS and
DOS 3.3 installed automatically.

Two minor caveats:

1. Ifyou do not have your disk drive in slot 6, DOS 3.3 will hang
the first time you try to access a disk, unless you specify the
slot number. For example, if your drive is in slot §, to catalog

1170 only limitation is available

memory.

the disk the first ime. you would need to type CATALOG, SS.
After that, you can omit the slot number, and it will be
remembered.

2. If you run & program that tests for the presence of ProDOS by
exccuting a PEEK (48896). the test will succeed even if DOS
3.3 1s actually active. This is because DOS 3.3 has been relo-
cated 1o run lower in memory. This may cause problems with
SOME Programs.

Now, you can load BASIC programs under one system, cnter
the other system by typing either DOS or ProDOS, then save your
program, or use any other of that system’s commands.

ENTERING THE PROGRAMS
To enter the programs, first boot ProDOS and then type in the
Applesoft program in Listing 1. Save it with:

SAVE DOSLOAD

Next, type in the Applesoft program in Listing 2, and save it with:
SAVE LOADER

Then, enter the Monitor with a CALL — 151, and type in the hex
code from Listing 3. Save it with:

BSAVE PATCH.0,A$7000,L$7C
Finally, enter the hex code from Listing 4, and save it with:
BSAVE PATCH.1,A$81D4,L$7B

Of course, if you have an assembler, you can enter the assembly
language code from Listings 3 and 4, and assemble the programs.

For help with entering Nibble listings, see the beginning of the
Program Listings Section.

HOW THE PROGRAMS WORK
Setting Up the System

When DOSLOAD is run under ProDOS, it POKEs a small
machine language routine into page 3 of RAM. This routine uses
the ProDOS machine language interface (MLI) to read blocks
from a disk.

First, though, a call to FREBUF in the BASIC.SYSTEM global
page at SBEFS frees any reserved memory. FREBUF is one of two
routines in BASIC.SYSTEM that handle reservation requests for
RAM. FREBUF releases reserved RAM.

Another routine, called GETBUF. located at SBEFS5, is used to
reserve S2A00 bytes ($2A pages) of RAM. When it's called. GET-
BUF attempts to reserve the number of pages of RAM that is in
the Accumulator. If it’s successful, the Carry bit is cleared; if it's
unsuccessful, the Carry bit is set. If GETBUF is successful, the
Accumulator will contain the high byte of the starting address of
the reserved block of RAM. This is where the DOS image will be
stored. The address must be $7000, or the program will end with
an error.

The location of the default disk drive is retrieved from ProDOS
and installed in the page 3 routine for doing the block reads from
the disk. At this time, the last used drive must contain a DOS 3.3
system master disk. Since DOS 3.3 is stored on tracks 0, 1 and
part of 2, the program reads blocks 0-23 (8 blocks per track) into
RAM at locations $4000-$6FFF. The DOS 3.3 code is $2500 (9472)
bytes long. This is 18.5 blocks long. More has been read in than
we need, but we can just ignore the extra.

The calls to the MLI are at $300-$310. The cntry point is $306.
When the MLI is called, the following byte is the command num-
ber to MLI, which is $80 for BLOCKREAD. The next two bytes
are the address of a parameter list ($300-$305) that the MLI uses.

The parameter list contains several items. First, it holds the num-
ber of items in the list — three in our case. The next byte is the
address where the Jast unit number was POKEd by BASIC. The
next pair of bytes, $00 and $40, refers to address $4000, where
the block will be stored. BASIC increments the address by $200
before the next call. The last pair of bytes holds the block number
The second byte will always be zero in this program. The first byte
is set by BASIC for each call to read blocks 0-523.

Each block is $200 (512) bytes or two pages long. The pages
in DOS 3.3 are not sequential, however, so the image must be
shuffled around before it can be used.

The routine that does this shuffling is fairly simple. It uses a simple
loop to move $100 bytes from the address that DOS was read into,
to its correct location, as if it had been read in normally by a master
boot. Even though the listing shows the LDA and STA referring
to address $0000, the high bytes of these addresses will be POKEd
in by BASIC for the calls from there.

There is a reason to use the DOS system master. In the old days,
when RAM was very expensive, DOS 3.3 had to operate in Apples
with different amounts of memory. To do that, the system master
needed two extra pages (sectors) of code. When booted, the system
master would load as if there were only 16K of RAM available,
the minimum for DOS 3.3 use, then call the extra code. This extra

code, called the relocator, would check each memory page start-
ing at 48K size (SBF00), and work down in memory until it found
usable space. It would then readdress all of DOS 3.3 to operate
at the top of memory, and copy it into the available memory. Lastly,
it would call the DOS, to RUN the Hello program.

We can use this relocator code ourselves to readdress the DOS
to the memory level that we want. In this case, we tell it that the
top of memory is page $99, which is just below BASIC.SYSTEM.
Before we can call the relocator, we inhibit the jumping into DOS
10 continue the boot, then call the code, Lines 270-310 set up and
enter the DOS relocator code. A patch must be made in the DOS
code that clears BASIC for the command FP. When the FP com-
mand is issued. normally the 1/O buffers are rebuilt and HIMEM
is reset. Since this would conflict with BASIC.SYSTEM's general
purpose buffer, this cannot be allowed.

After the relocator code has finished executing, the I/O buffer
building routine is called to set up the default number of buffers
(three). This means that no more than three I/O operations may
take place at once. For example, you may not have more than three
files open at a time, or two open files and a CATALOG. The code
that is exccuted by FP is modified to prevent setting the language
card memory to an improper state. Now the BASIC program point-
ers must be cleared. and the DOS 1O hooks reconnected. Since
DOS 3.3 supports more than just Applesoft BASIC, the program
installs the I/O vectors for Applesoft in the DOS 3.3 addresses,
which handle IYO for BASIC, to avoid any error. Finally, 64 ($40)
is stored in the location used to tell DOS what language is in use.
This forces DOS 3.3 10 use Applesoft in ROM.

Now the changes are completed. DOS 3.3 is in memory at loca-
tions $7700-8$99FF. The buffers for DOS 3.3 are built and in place
at $7000-$76FF. Next, the program installs the code to set up the
connection between DOS and ProDOS, and the code to do the
switching. The file PATCH.0 is BLOADed at location $7000, the
start of the lowest file buffer for DOS 3.3. This area will be initial-
ized by DOS before its use, so it's safe to use. The file PATCH.1
is BLOADed at location $81D4, and that’s where it operates. Last.
the routine in BASIC.SYSTEM that frees all memory that was re-
served earlier is called.

With both systems in place, Apple memory looks like this:

$9A00-SBFFF BASIC.SYSTEM and both global pages
$7700-899FF Readdressed DOS 3.3

$7000-$76FF Three DOS 3.3 buffers

$6C00-S6FFF ProDOS general purpose buffer
S0800-S65FF Free memory

How the Routines Work Together

There are two patches. PATCH.0 is the setup routine, which is
not used after it has done its job. PATCH. 1 is the code that actu-
ally connects the two operating systems together. It resides at
$81D5-$8150, above the DOS 3.3 code that builds the 1/0 buffers.
That is another reason for building them before the file DOS 38.5K
is BSAVEJ. If the buffer building routine is called, the RTS instruc-
tion at the beginning of PATCH. 1 returns program flow to where
it came from. leaving the routine undisturbed.

PATCH.0 handles the tricky part of working with both systems.
It first frees all reserved memory that may have been set aside for
special purposes, then calls BASIC.SYSTEM to get $2A pages of
memory for program use. The page number returned, which is the
bottom of the area assigned by BASIC.SYSTEM, musr be $70. If
itisn’t, program flow drops through to ERROR. There all memory
is set free, and an OUT OF MEMORY error message is displayed.
If the page number is $70. DOS is copied from locations $2000-
S49FF to locations $7000-$79FF.

A couple of small medifications are made to DOS 3.3. First, the
MAXFILES command is disabled. Also, the MON flag is left alone
when the program enters DOS 3.3. Normally, the MON state is
set to NOMON 1,0.C by DOS 3.3. Since it is left alone, you can
reset it if you want.

After installing the command word PRODOS, the program sets
up the page 3 vectors to access the DOS File Manager at the RWTS
routines. The connection with BASIC.SYSTEM is set up to scan
for DOS. The memory 1s marked in ProDOS’s bit map as used so
that it will not be overwritten. Last, the exit code is installed in
page 3

Changing From ProDOS to DOS 3.3

The programmers at Apple made it very casy to add a command
10 ProDOS BASIC.SYSTEM. Every ume BASIC.SYSTEM gets
a command that s not its own, it sends the command to BASIC
via an address in its global page. That address is called XCOM.
which stands for external command. Normally. the address just
pomnts o an RTS instruction.

Switching from ProDOS to DOS is achieved by the command
DOS. issued from ProDOS in either mode. When ProDOS gets
a command that is not one of its own, it exits through XCOM, which
normally returns to BASIC. To add commands to the ProDOS
environment, the vectors at XCOM ($BE07,SBE0S8) can be changed.
When the new command is found by the added routine, flags for
the external command are set, and the address of the routine to exe-
cute the command is set at SBES0.SBES1. To resolve memory con-
flicts, the command MAXFILES and the code that built the buffers
are disabled.

When BASIC.SYSTEM gets a command it does not recognize.
it exits via XCOM. That will take it to our program at location
XCOMI1. The program searches for the string "DOS™". BASIC
.SYSTEM has already done case conversion, so lower-case input
works. Locations SBE6C and SBEGD contain the address of the
string stored in BASIC.SYSTEM. The program checks four charac-
ters (including the ending RETURN) for a match with the new DOS
command. If @/l four match, the command DOS has been found.
If not, the Carry bit is set and the program exits with a JMP to
the address that XCOM held in the first place. If a match is ob-
tained, the real fun begins.

To continue to exccute, BASIC.SYSTEM must be informed that
an external command cxists. BASIC.SYSTEM can also scan for
addiional parameters, if requested, but no more parameters are
needed. The command number is stored by BASIC.SYSTEM at
XCNUM (external command number) in location $BES3. To exe-
cute an external command. a zero is stored there. When control
goes back to BASIC.SYSTEM, the zero tells it to send control to
the address at XTRNADDR (external address) at SBES0O.$BESI.
That sends control to the code at the DOS command, which calls
DOS 3.3.

Changing From DOS 3.3 to ProDOS

The simplest way to add a command to DOS 3.3 is to use an
existing command for a different purpose. The command address
can be changed by changing its vector in the address table. The
command name characters can be changed, too. as long as the high
bit for the last letter of the name is left off and the rest of the bits
are left on.

I decided to use the DOS 3.3 INT command, since it is not used
in ProDOS. Unfortunately, INT is only three letters long. and I
needed six letters for the command PRODOS. | moved all of the
commands between INIT and INT down by three letters, thereby
giving me six letters at the INT spot, and changed INIT to SFC.
This made it almost impossible to accidentally call INIT, but even
if it were called, it would still need a file name.

To INIT a DOS 3.3 disk from within a program, use the
command:

PRINT CHR$(4);CHR$(252):** HELLO"'
From immediate mode, you can type:
| HELLO

Be careful not to accidentally initialize a disk with this command.
Later, boot the disk under DOS 3.3, and run MASTER CREATE

from your system master disk on it so that it will boot properly.

The PATCH.O file frees all memory, then saves S2A00 bytes.
It checks to see if free memory starts at S7000. If not, there's an
error and the program halts. If it does, then an RTS instruction
is stored in the MAXFILES address to disable the command. An
address is changed so that the MON flag won’t need to be reset
to zero upon each reentry to DOS 3.3.

Switching

The routines that do the switching are basically similar. First,
the current I/O vectors at $36-$39 are copied into the system that
will be entered. This way, there won’t be a problem if 80-column
cards, printers, etc., are in use during the switch. Next, the I/O
vectors for the new system are stored in temporary locations in the
new system. In entering ProDOS, they must also be stored at
$36-$39.

Last, the Trace flag is set for ProDOS. and cleared for DOS 3.3.
The reason for changing the Trace flag status is that ProDOS uses
the trace function to keep track of what is going on in BASIC. If
a trace is in progress, ProDOS will take care of it. When switch-
ing to DOS 3.3, BASIC's Trace flag must be cleared because DOS
3.3 will not operate properly with a trace running. Then the old
system is allowed to finish its function normally, so all pointers
and flags are in their proper states. Here's how it's done: when
the old system restores its 1/O hooks before exiting to BASIC, it
sets them to the system being entered!

Because interrupt handling is different in the two systems, the
interrupts are disabled for a switch in either direction. Also, since
RESET returns to the operating system through the 1O hooks,
RESET will stop any operation and return to the system that was
last in usc.

SUGGESTIONS AND MODIFICATIONS

When you have finished using DOS 3.3, switch to ProDOS and
CALL 768 in immediate or deferred mode. This will disconnect
the XCOM link, reset HIMEM., and free all the memory that was
used by DOS 3.3. If you disconnect DOS 3.3 while in DOS, you
will remain in DOS until a PRODOS command is entered. However.
DOS 3.3 will be vulnerable to damage from BASIC. For that rea-
son, I suggest exiting only while in ProDOS. HIMEM will be reset
to 38400 ($9600).

DoubleDOS transfers files more quickly than CONVERT and
the CATALOG command is more convenient. It you have 128K
RAM., you can use the /RAM disk for one environment and a floppy
drive for DOS 3.3. With two drives, use one for each operating
system. Whatever combination you set up, the operating system
that you enter will default to the Jast device that if used.

If the exit code at the beginning of page 3 is in the way, it can
be moved o another area that is called later. You may also BSAVE
it to disk, then BLOAD it when you are ready to leave. Of course,
you can always do a BYE to ProDOS, or rcboot.

You will find that FILER and FID don’t work due to the large
amount of RAM they require. Do nor attempt o execute any Pro-
DOS SYS type routines because the SYS file will throw out any
other system — in this case. both BASIC.SYSTEM and DOS 3.3.

Don't attempt to BLOAD a file above 28672 ($7000) under DOS
3.3 because DOS 3.3, ProDOS or both will be overwritten. The
only exception might be a BLOAD of a custom patch to DOS 3.3.
Such patches are common, but usually will be written for DOS 3.3
at 48K level, and would have 10 be modified for DOS 3.3 $2600
bytes lower. Be careful about patching DOS 3.3. The length and
starting addresses for a binary type DOS 3.3 file will now be found
at SB460, $8461 and $8472,58473 (by PEEKing 33888, 33889,
33906 and 33907).

Listings for DoudleDOS begin on page 105 '

DoubleDOS

Article on page 24

THIS PROGRAM IS AVAILABLE ON DISK

If you'd rather not type in the listing for this program, you can buy it on

disk, complete, free of typos and ready to run. DoubleDOS, Tape Library

and Barricade are available on disk for an introductory price of §19.95
plus $1.50 shippinghandling ($2.50 outside the U.5.) from Nibble, 52
Domino Dr., Concord, MA 01742, Introductory price expires 6/30/87, See
the coupon on the last page of the Nibble Software Catalog for ordering
information.

Listing 2 for DoubleDOS

Listing 1 for DoubleDOS
DOSLOAD

REM

R

REM
REM

+ DOSLOAD
REM «

BY WILLIAM REYNOLDS =
COPYRIGHT (C) 1987 .
REM =
REM -

BY MICROSPARC, INC.
CONCORD, MA 01742
REM)
TEXT : HOME
PRINT “DOSLOAD":
DS 111"

PRINT "COPYRIGHT 1987 BY MICROSPARC, INC

VTAB 10: PRINT CHRS (7);"INSERT DOS 3.3
SYSTEM MASTER DISKETTE INTO THIS DRIV

E NOW, PRESS <RETURN>";: GET AS: PRINT

FOR X = 768 TO 809: READ Y: POKE X.Y: NEXT

PRINT "BY WILLIAM REYNOL

120
130 DATA 3.0.0,64,0.0,32,0,191,128.0,3,141.1
6,3,96,0.162,0,138,189,0,0,157.0,0,232.2
08.247,96,32,248,190,169,42,32,245,190.1
41,42 ,3,96

DATA 32,75,214,32,81,130,96
CALL 798: IF PEEK (810) <

“MEMORY CONFIGURATION ERROR !!!":
POKE 769,(PEEK (48701) - 1)
(48700) + 16)

FOR X = @ TO 23: POKE 771.X « 2 + 64: POKE

772 X

CALL 774: IF PEEK (784) < > © THEN PRINT
: PRINT CHRS (7)"READING ERROR": END

NEXT : GOTO 210

POKE 790.A1: POKE 793,A2: CALL 785: RETURN

140
150
END

160 + 128 + (PEEK

170
180

190
200

210
220

:Al = 64:A2 = 54: GOSUB 200

FOR B = 0 TO 4:A1 = Al + 1:A2 =
200: NEXT

FOR B = @ TO 8:Al =
200: NEXT

Al = Al + 1:A2 = 32: GOSUB 200:Al
1:A2 = A2 + 1: GOSUB 200

FOR B = @ TO 13:A1 = Al + 1:A2 = 47 - B:
GOSUB 200: NEXT

Al = Al + 1:A2 = 48: GOSUB 200:Al1 = Al +
1:A2 = A2 + 1: GOSUB 200

Al = 106: FUR B = ¥ TO 3:Al
53 - B: GOSUB 200: NEXT
POKE 6916,153: POKE 7646 234: POKE 7205,
96
CALL
POKE
.234
CALL 33236

FOR X = 32634 TO 32640: READ Y: POKE X.,Y
: NEXT : POKE 30696,94

FOR X = 1 TO 12: POKE 30549 + X, PEEK (3
9571 + X): NEXT

POKE 33974,64

HOME : PRINT CHRS (7):"INSERT THE PRODO
S DISKETTE, PRESS <RET>":: GET AS: PRINT

31
230 Al + 1:A2 =
240 = Al +
250
260
270 = Al + 1:A2 =
280

290
300

6915
33247,169: POKE 33248.3: POKE 33249

310
320

330

340
350

360 PRINT CHRS$ (4)"BSAVE DOS38.5K,A$7000,LS
2A00"

370 END

END OF LISTING 1

> 112 THEN PRINT

- B: GOsSuB
63 - B: GOSuUB

LOADER

10 REM R R

20 REM +« LOADER ‘.

30 REM +« BY WILLIAM REYNOLDS

40 REM « COPYRIGHT (C) 1987 °

50 REM +« BY MICROSPARC, INC. =+

680 REM - CONCORD, MA 01742

70 REM EEFSEEIIACN BRI ST ENNOE NSO

80 TEXT : HOME

90 PRINT "LOADER": PRINT "BY WILLIAM REYNOLD
S 1L

100 PRINT "COPYRIGHT 1987 BY MICROSPARC. INC

110 FOR X = 1 TO 2000: NEXT : VTAB 12: PRINT
"LOADING AND CONFIGURING DOS..."

120 DATA 169,158,141,7,190,169,190,141,8,190
.32,248,190,169,42,32,245,190,141 ,34,3.1
44.5,.169,0,24 144 ,246,169,76,141,10,3,96

130 FOR X = 768 TO 801: READ Y: POKE X,Y: NEXT

140 CALL 768

150 IF PEEK (802) = 112 THEN 170

160 HOME : PRINT CHRS (7);"MEMORY CONFIGURA
TION ERROR.": END

170 ONERR GOTO 250

180 PRINT CHRS (4);"BLOAD DOS38 .5K": REM A
$70090

190 PRINT CHRS (4):"BLOAD PATCH.0": PRINT CHRS
(4);"BLOAD PATCH.1,AS7080": REM S7000 A
ND $7080

200 POKE 216.0

210 POKE 33896,1: POKE 33898.6

220 CALL 28672

230 IF PEEK (@) = @ THEN HOME : PRINT : VTAB
10: PRINT "DOS 3.3 INSTALLED, 25K BYTES
FREE.": PRINT : PRINT "TYPE ‘DOS' TO MOV
E TO DOS 3.3.": PRINT "'PRODOS’' TO RETUR
N TO PRODOS'": END

240 GOTO 160

250 HOME : VTAB 8: PRINT "PATCH.9, DOS 38 K,

OR PATCH.1": PRINT "FILE NOT FOUND": END

END OF LISTING 2

Listing 3 for DoubleDOS
PATCH.0

7000:
7003
7005 :
7008 :
TO0A -
7000
TO0F .
7018
7013:
7016
7018:
T018:
7010D:
7020:
7823
024:
7026 :
Joze
TOZA:
7e20:
TO2F .
7032
7035
7036
Te18:
TO3A:
7030
Jole:
7041
7043
7045 .
Tedn

&§ 72 M

80 51 7C

o8 77

90 85 82

82

76 T8
82

B0 80 7¢
90 D2 81

8D 57 78
90 06 03

« PATCH @
« BY NILLIAN REYNOLDS 111
« COPYRIGHT (C) 1987

« BY MICROSPARC.

INC.

« CONCORD . NA. 01742

cenen berbanan

FR
GE
Lal

PROOOS

X
ST

LEd
AL

A3

Al

AS

A6

EBUF EQU
TEUF EQU
€ (]
EQU

N LU

ART

SBEFS
SBEFS
$7C82
38105
38220

7000

FREBUF
P24
GETBUF
Al
FRROR
#5700

A2

560
$7C51
#5852
s7708
50
$828444 X
SB28441 X
tor
¥SEA

A3

252
38284
'sos
NAME X
$82EE.X

Ad

FSIA
s7ese. x
38104 X

A5

1518
$7857.X
$03D6. X

tessssrssnsan eraan

Free ail butfers

We want S2A pages

Get the bufter

It carry set

then go Frror

High byte must be 370

RTS instruction
Inhibit Maxf:les command
Don't roset NON flag when
re-entering DOS

Shift most of the cowsand
letters by 3 to make room
"PRODOS® command in
spot that "INT' was
TINIT

Is now "1 instead

install "PROOS' command

install code to detect
‘DOS* and ' PRODOS'

sot page 3 vectars into
machine language entry
points into DOS

Listing 3 for DoubleDOS

PATCH.0 (continued)

7048
704C:
704K

7050
7053

7085

7058

7054 -

7050
705¢F

7062

7064

7067 -

7864
7068

7060 :
706F

071
072
074

7076
707%

7078.

ca
e
AS

AS

F7
D4
AC
1
4“0
20
07
82
o8
03
34
52

F7
e
L
FF
9

52
ar

n”

BE
L 13

BE
7C

4F

END OF LISTING 3

Listing 4 for

PATCH.1

e

DEX
BPL
LOA
STA
LOA
STA
LOA
STA
LOA
STA
LOX
A7 LDA
STA

ERROR

DoubleDOS

A6

#PRODOS-3$@1 Entry point to DOS to

$774C
#>PROCOS
$7740
AXCON
SEEQ7
A>XCON
ssees
1303
$BE3A X
PVEC, X

A7

o

509

for

NSFF
ERROR-$503

“PRODO "

g

goto PreDOS

ProDOS external command
vector goes to code at XCOM

save current ProDOS vectors
for later re-use

i1 no error, put 500 at 8000
BASIC program will test

error condition

i1 error. put SFF AT 30008 .

« PATCH.1

« BY WILLIAN REYNOLDS 111

+ COPYRIGHT (C) 1987

« BY MICROSPARC.

ING

« CONCORD . NA 01742

B T

= MERLIN PRO ASSENBLIR

B

FREBUF EQU
GETBUF EQU
PVEC EQU

ORG

.

SBEFS
SBEFS
$7C52

s8104

8104

8234
8236
8239
823C:
B823E:
8241
8243
8246
8247
8248
8249

824A.
8240
824

. AD
L]
AD
13

09
Do

© 88
Da
8C
ac
A9
8D
A9
80
18
60
is
60

s8:2

82

BE

53

END OF LISTING 4

CNPTCH

Al

A2

xcom

Al3

FSEA
$7989
$7983
¥59A
$798%
vse3
$8453 X
SBEI0 X

PVEC. X
SBEYE X
$36 X

AlL
ASAS
2
57986

f303
$8E30. X
$8453 X

Al2
438D
EELL
as78
$8E34
$BE36
$BE3S
$0€37
1500
sF2

$BEEC
00
SBE6D

00
$00

Disable interrupts
fet DOS finish a lot
of things that it
needs to. but force
return to here

save current 1/0 vectors
and set ProDOS intercepts

set TRACE flag
let DOS exit. but It will jump
into PreDOS now

save current [/0 vectors

set DOS intercepts

disable TRACE flag

check for 'DOS’

set external command flags

set external routine address

icarry = @ because we had
s command

icarry = 1 because we ¢id
inot find cosmand

