DoS DEVICE

DETECTIVE

5 APPLE ;UTILITIES

ring the power and

convenience of device-independent file handling to DOS 3.3
with this small program, and save yourself the trouble of
continually typing in slot and drive numbers.

evice-independent file access is a capability of many

disk operating systems. ProDOS is one such operat-

ing system. To access a file, the user specifies the path
name. ProDOS does not need to know the physical location of the
file. It searches through the devices connected to the system until
it locates and loads the specified file.

DOS 3.3, on the other hand, is device dependent, and this can
cause file access problems. FILE NOT FOUND errors and inad-
vertent creation of text files for files that already exist on some alter-
nate slot and/or drive are among the more common problems.

The amount of code that programmers have been forced to devote
to device-dependent file handling is legion, A typical solution is
to fix the operation of the program to one system configuration,
e.g., the program disk in drive 1, data disk in drive 2, and both
drives connected to the boot slot. Not only does this solution limit
the transportability of the software, it also requires extensive hand-
holding and documentation for those novice users who neither know
nor care about slots, drives, and the like.

A better solution is to patch DOS 3.3 so that it provides for device-
independent file access. Just such a patch is the subject of this article.
With DOS Device Detective installed, if the requested file is on
the system (in any slot, any drive), the patched DOS will find it.
FILE NOT FOUND errors for existing files and the myriad of other
annoyances become a thing of the past.

USING THE PATCH
Because the program installs itself between DOS and its buffers
(by moving the DOS buffers dovn in memory), it should be exe-

cuted before any files are opened or any variables are declared.
Once installed, the patch will remain active until the system is re-
booted or the INIT command is given. To have the patch installed
any time DOS is booted, simply SAVE the following one-line
BASIC program as the Hello program (or part thereof) on your
boot disk:

10 PRINT CHR$(4) "BRUN DETECTIVE A$2008"

DEVICE-INDEPENDENT FILE ACCESS

For longtime users of DOS 3.3, the effect of the patch can be
a bit disconcerting at first. As an example, attempt to LOAD a non-
existent BASIC program by typing LOAD XXXX. After search-
ing the default disk, instead of a FILE NOT FOUND error, the
alternate drive connected to the same slot will come on. If you have
multiple disk cards, the drives connected to each of them will be
accessed until each disk drive on the system has been searched for
the nonexistent file. Finally, the original disk drive will come on
again briefly as DOS Device Detective admits defeat with a FILE
NOT FOUND error.

If you follow the unsuccessful LOAD with a CATALOG com-
mand, the directery of the disk in the first drive searched will be
presented, indicating that despite the extended romp through the
various drives, the default slot and drive have not been changed.
On the other hand, had the file been located on one of the other
drives, the file would have been LOADed, and the drive where
the file was found would become the default drive.

On cataloging the disk, you should notice one further difference:
the normal *“*DISK VOLUME™" header has been replaced with
“DETECTIVE."" The new header indicates that DOS Device Detec-
tive is currently patched to the system.

The search for the file always begins with the disk in the default
drive. Since the programs and files belonging to a particular appli-
cation are almost always resident on the same disk, beginning the

search with the default or last-accessed drive results in a consider-
able reduction in file access time relative to a fixed search pattern.
Drives that are connected to slots other than the default slot are
searched starting with the lowest slot number.

If two files on the system have the same name, only one will
be accessed on a given call to DOS. Which of the two is accessed
depends on which drive — as determined by the search pattern —
is searched first. Incidentally, specifying a nonexistent device as
the default will only slow the search; if the file is on the system,
DOS Device Detective will find it. Similarly, disk cards with only
a single drive attached (e.g., the typical Apple Ilc configuration
with its single built-in drive) will also slow the search. This is be-
cause DOS 3.3 trics 48 times before giving up on the nonexistent
second drive.

FILE ACCESS COMMANDS

Each of the file access commands (LOAD, BLOAD, RUN,
BRUN, VERIFY, DELETE, LOCK, UNLOCK, APPEND, RE-
NAME, CHAIN and EXEC) initiates a search for the specified file.
If the file is found, then the specified command is performed, and
the slot and drive — even if different than the ones specified with
the command — are defaulted to the device on which the file was
located. If the file is not located, a FILE NOT FOUND error mes-
sage is generated, and the default slot and drive parameters are
unchanged.

The changing of the default slot and drive parameters upon locat-
ing the file provides a simple method of determining the location
(or existence) of a particular file or diskette on the system. To locate
a particular file, simply VERIFY the file name. If the file is on
the system, the default slot and drive parameters will be changed
to reflect the location of the file. (These slot and drive values may
be found by PEEKing 43626 (SAA6A) and 43624 ($AAG68), respec-
tively.) If the file is not found, you can be assured that it is not
on the system.

Similarly, to locate a particular diskette, VERIFY a file name
that you know is on the desired diskette. If the file is found, then
the default slot and drive parameters will point to the desired disk-
ette. If the file is not found, your program can request that the user
insert the appropriate disk (in any slot, any drive), and then repeat
the VERIFY command. By using a unique Hello program name
on cach diskette which can then be verified, each diskette can be
addressed uniquely — independent of its physical location — in a
fashion similar to ProDOS volumes.

The program DETECTIVE.DEMO demonstrates the use of DOS
Device Detective (see Listing 3). When you run this program, after
a short title screen presentation, the DETECTIVE patch is installed.
Remove the disk containing the DETECTIVE program, and put
it in any drive on your system. Press Return, and DETECTIVE
will search the drives on your system until it finds itself. The demo
will then display the slot and drive numbers where the file was
found. If none of the disks on your system contains the file DETEC-
TIVE, the program will tell you that, also.

ENTERING THE PROGRAMS
If you have an assembler, enter the source code from Listing
1 and assemble it. If you don’t have an assembler, enter the Moni-

tor with CALL — 151. Then enter the hex code from Listing 2 and
save it with the command:

BSAVE DETECTIVE,A$2000,L$11A

To enter DETECTIVE.DEMO, type in the Applesoft program
in Listing 3, and save it with the command:

SAVE DETECTIVE.DEMO

For more information on entering Nibble programs, see the Pro-
gram Listings section at the end of this issue.

FILE CREATION COMMANDS

The file creation commands (OPEN, SAVE and BSAVE) bechave
similarly to the file access commands, except that upon failing to
locate the specified file on any drive, the file is created on the default
disk. For example, to SAVE a new BASIC program to the disk
in drive 2 connected to slot 6, issue the command:

SAVE progname, S6, D2

If the program name is truly unique, DOS will search each and
every drive on the system for the file, and then return to slot 6,
drive 2 to save it. If, however, a file of that name already exists
on the system, DOS will attempt to save the new program over
it. If the found file is of the same file type (and not locked), it will
be replaced by the new file. If it is of some other file type, DOS
will exit with a FILE TYPE MISMATCH error and the slot and
drive defaults will be changed to point to the disk containing the
offending file.

HOW THE PATCH WORKS

DOS Device Detective (Listing 1) assumes an Apple II (any var-
iant) with a minimum of 48K RAM and DOS 3.3 located at $9D00
(i.e., the usual configuration). The first section of the program,
labeled **Install,"* is used to relocate the patch into high RAM (over
the first DOS buffer); it is discarded once the patch is in place.
Although the program is assembled to reside at $9BE3, the reloca-
tion code is written to be BRUN from $2000 (8192).

The Install section of the code first relocates the patch into the
page of memory immediately below DOS. It then calls a subrou-
tine within the patch itself, called ATTACH, which modifies DOS
to point to the patch. Finally, the Install section exits through another
routine within the patch, called CREATE, which instructs DOS
to rebuild its buffers below the patch. Both of these routines are
discussed in more detail later.

DCS 3.3 has a hierarchical architecture consisting of three nested
systems. The outside or highest level is the Command Interpreter,
which serves as the interface between the user and actual disk access.

The intermediate level is the File Manager which, as the name
suggests, handles all of the details associated with reading, writ-
ing, organizing and generally keeping track of files. The File
Manager is called by the Command Interpreter to perform the tasks
that the user has requested.

The lowest level is the Read/Write a Track/Sector (RWTS) sub-
routine, which handles the essentials of actually reading from and
writing to the physical device. It is called by the File Manager,
and knows nothing about files, but only tracks and scctors.

The bulk of the work, then, resides with the File Manager, and
it is here that DOS Device Detective patches DOS.

All file access, including such high-level activities as renaming
and deleting files, initially requires that the file be opened. This
burden falls to a section of the File Manager code known as COM-
OPEN — the COMmon OPEN routine used for all file access within
DOS 3.3 (see *‘Opening and Closing Files'" by Sandy Mossberg,
Nibble Vol. 5/No. 4, and Beneath Apple DOS by Don Worth and
Pieter Lechner, Quality Software, 1981).

Before a file may be opened, it must be located (or allocated,
if it is a new file) within the Volume Table of Contents (VTOC).
Locating a file involves retrieving such information as its size, file
type, and location on the diskette. The COMOPEN routine con-

tains within it a call to another subroutine (which [refer to as
ALLOC, for ALLOCate) whose job it is to locate the file on the
diskette and stuff such information into various data tables within
DOS. DOS Device Detective is patched to DOS by replacing this
call with a jump to the patch, so that all attempts by the File Manager
to open a file will now be vectored to the patch. The call to ALLOC,
then, becomes a job for the patch rather than the File Manager,
and, as will be explained, occurs in a much more indirect fashion.

This modification to DOS (and another modification to the sec-
tion of code that handles the INIT command, discussed later) is
the function of the ATTACH subroutine (lines 175-193) in Listing
2. The ATTACH subroutine also replaces the normal DOS cata-
log header with the “*“DETECTIVE"" header, and is called by the
Install code when the patch is first installed on the system.

Any call to COMOPEN, then, will now enter the patch at
SCHDRYV (line 60), which immediately calls another subroutine,
LOCFIL (lines 127-130). LOCFIL, in turn, calls yet another sub-
routine, GETFIL (lines 132-139), which, after some finagling with
the system stack, finally calls ALLOC.

Why the subterfuge and indirection in calling ALLOC? After all,
the File Manager COMOPEN routine calls it directly. Well, when
the File Manager is called by the Command Interpreter. one of the
first things it does is save the stack pointer in a safe location. In
this way, if it ever runs into a serious problem, such as an /O
ERROR, it can simply replace the stack pointer (so that it now points
to the appropriate return address within the Command Interpreter)
and RTS to the original caller. In doing so, however, it skips over
the tangled web of nested subroutine calls (such as COMOPEN to
ALLOC to. . .) that got it into trouble in the first place. This may
be fine for the File Manager, but not for DOS Device Detective,
which is now part of the tangled web. DOS Device Detective needs
to know of the error so that it can check another drive.

When LOCFIL calls GETFIL, the return address to LOCFIL is
pushed onto the system stack. GETFIL retrieves the stack pointer
so carefully stashed away by the File Manager, and saves it in
another location. It then stores the current stack pointer — which
points to LOCFIL’s return address — in the File Manager’s bail-
out location, and jumps to ALLOC, If no grievous errors occur,
then ALLOC returns in the normal fashion to LOCFIL. If, however,
the File Manager chooses o take the bail-out route due to, say,
an 1/O ERROR, control still returns to LOCFIL. In either case,
following the call to ALLOC, LOCFIL restores the original stack
pointer value to the File Manager’s hiding place. LOCFIL then
returns to whatever called 1t which, at this point of the story, is
still SCDRYV, the first line of the patch.

Error status within all three sections of DOS is indicated by the
Carry bit in the system’s Status Register: Carry clear means ““no
error,"” while Carry set means that an error has occurred. Upon
the return from LOCFIL, the absence of an error indicates that a
file having the requested name exists in the diskette's directory.
As this is what the patch was looking for, SCHDRV branches to
DONE (lines 73-77), which replaces the default slot and drive
parameters with those corresponding to the slot and drive in which
the file was found. DONE then jumps back into COMOPEN at a
point immediately following the patch. Next, COMOPEN checks
that the found file is of the correct file type (if not, it exits to a
FILE TYPE MISMATCH error), completes the opening of the file,
and returns to the command interpreter.

If LOCFIL returns with an error, then the file was not found.
SCHDRY then sets the drive number to the alternate drive (lines
62-64), and tests this value against the default drive number. If they
match, then both drives on this disk card have been searched, and
the routine branches to NEWSLT. Otherwise, SCHDRV jumps to
the beginning of COMOPEN, which, after resetting some param-
eters, returns control to SCHDRV. Then the whole process just
described is repeated on the alternate drive.

If both drives on a given disk card have been searched, control
is passed to NEWSLT (lines 83-87), which begins the search for
another disk card. NEWSLT determines whether the current call
for a new slot is the first for this file by comparing the current slot
value to the default slot. If they match, then NEWSLT initializes
the search and falls through to CHGSLT. Otherwise, NEWSLT
branches to CHGSLT with the current slot value.

CHGSLT (lines 92-103) repeatedly increments the slot value until
it finds a slot that is not the default slot (which has already been
searched), and which contains a disk card. If such a slot is found,
then the routine exits once again to the beginning of COMOPEN,
which returns control to SCHDRYV. Otherwise, control is passed
to NOTFOUND (lines 109-121), which resets the slot and drive
parameters to their original values, allocates the file via LOCFIL,
and returns control to COMOPEN. COMOPEN then checks
whether the file may be created and, if so, creates the file on the
disk. Otherwise, it exits with the FILE NOT FOUND error.

DISCONNECTING THE PATCH AND INIT

I mentioned earlier that installing DOS Device Detective also
patches the INIT command handler. The purpose of this second
patch is to remove the first patch and return DOS to its nonpatched
state whenever the INIT command is used. If this isn’t done, then
any diskette initialized with the patched DOS will contain a copy
of DOS that is incapable of accessing any files. This is because
the initialization routine will write only DOS and not the DOS
Device Detective patch to the diskette. Consequently, whenever
INIT is used, DOS Device Detective is disconnected from the sys-
tem. You can verify this, by the way, by executing a CATALOG
after initializing a diskette — the **DETECTIVE'" header will have
been replaced with the normal “‘DISK VOLUME."

DOS Device Detective is not gone, just disconnected. You can
reconnect it following an INIT command by calling the ATTACH
routine (CALL 40119). Similarly, you can disconnect DOS Device
Detective at any time by calling the DISCON routine (CALL
40072). As with the INIT command, calling DISCON simply dis-
connects DOS Device Detective and returns DOS to its normal state
— it does not remove the routine from memory. Incidentally, DIS-
CON (or INIT) does not return DOS completely to normal. Any
diskette initialized with a copy of DOS from which DOS Device
Detective has been disconnected, when booted, will leave one page
($9C00-$9CFF) of protected memory between itself and its buffers.
You may use this arca (when not using DOS Device Detective) for
your own machine language programs.

The last routine to be discussed was included with the perma-
nent DOS Device Detective code (rather than the Install code) be-
cause of its general utility. It is the CREATE routine (lines 198-207),
and it is used to create (or remove) space between DOS and its
buffers (see “*“Managing and Moving Disk Buffers’ by W. Rey-
nolds, Nibble Express Vol. 1). To use this routine, you must POKE
the appropriate values (low address, high address, and the number
of buffers DOS is to build, respectively) into the first three page-
zero locations, and then CALL 40166.

As an example of using CREATE, consider removing DOS
Device Detective entirely from the system. In this case, CREATE
will be used to remove the one-page space between DOS and its
buffers, eliminating DOS Device Detective in the process. First,
disconnect DOS Device Detective by CALLing DISCON, then:

POKE 0, 0: POKE 1, 157: POKE 2, 3: CALL 40169

This sequence nf commands instructs DOS to rebuild three buffers
beginning at $9D00. DOS will now be completely back to normal.
The effect of using CREATE is similar to that of the DOS MAX-
FILES command, so be sure to use it only when no files are open
and before any string variables have been declared.

DOS Device Datective iistings begin on page 106 '

Listing 2 for for Ultra Fast Pix

8978 READER EQ WRTADL

ZERO PAGE SWAP AREA

.
8650 REGSAV 8BS REGNUM RESERVE JUST ENOUGH ROOM
.BS $7A00-. NMOVE TO NEAREST PAGE BEGINNING

‘HS 96979A9B9IDIEIFAE

.HS ATABACADAEAFB2B3

NS B485B8687096ABBBC

HS BDBEBFCBCDCECFD3

HS DEDTDSOADEDCDODE

HS DFESEGETE9EAEBEC

HS EDEEEFF2FIFAF5F6

HS FIF9FAFBFCFDFEFF

READ TABLE DEFINITION
SIX DATA BITS ARE 1-6

READ6L = 65432109
READ2R = 00000065
READAL = 43210900
READAR = 00006543
READ2L = 21002009
READER = @0654321

S0 FCUR BYTES READ ARE
SPLIT INTO THREE BYTES AS

1 = DI1(READ6L)+D2 (READ2R)
2 = D2(READAL)+D3 (READER)
3 » D3(READ2L)+D4 (READER)

DOS Device Detective

Article on page 62

HS

HS

HS

HS

HS

HS

-HS

ULTRA.FAST (continued)
8630 .
8640

7904
8660

79€D- 8670
8680 -

TADO. 96 97 9A

7A93- 98 90 OF

TAO6- SF A6 8650 WRTASL

JAQB. A7 A8 AC

7A08- AD AE AF

JAE- B2 B3 8700

7A10- B4 BS 86

7A13. B7 B9 BA

7A16- B8 BC 8710

7A18- BD BE BF

7A18- CB CO CE

7AIE- CF D3 8720

7A20- 06 D7 09

7A23. DA D8 DC

7426- DD DE 873

7A28. OF E5 E6

7A28- E7 E9 FA

TA2E- EB EC ar40

7A30- ED EE EF

7A33- F2 F3 Fa

7A36- F5 F6 8750

TAIS- F7 FO FA

7A38. FB FC FD

TAIE- FE FE 8760
8770 .
8780 .
8790 .
8800 .
8810 -
8820 .
8830 .
8840 -
8850 -
8860 -
8870 -
8880 -
8899 .
8900 -
8910 .
8920 .
8930 - BYTE
8949 - BYTE
#9840 . BYTE
8968 .

TARG-

TA80- 8388
8990 .

TABE- 00 00 00

7A83- @9 90 90

TAB6- 00 00 9000

7ABS- 00 00 00

7AB3. 00 00 90

JABE- 00 00 9910

7A93- 00 00 00

7A83. 00 00 00

7A96- 08 01 9920

7AS8. 00 00 02

TA98- 03 00 04

TASE- 05 06 9030

7AAD- 00 00 00

TAA3- 08 00 00

JAAG- 07 08 9040

TAAB- 00 00 00

7AAB- 09 0A 0B

JAAE- OC 00 5088

7ABD- 00 08 0E

FAB3- OF 10 11

7AB6- 12 13 9060

JABB- 00 14 15

7ABB. 16 17 18

JABE- 19 1A 5079

7ACO- 00 00 00

TACI- 00 00 00

JACG- 00 o0 908

TACE- 00 08 09

JACB- 18 80 IC

JACE- 1D IE 9099

JADD- 02 00 00

7AD3- 1F 00 08

JAD6- 20 21 9180

7ADS- 8@ 22 23

JADB- 24 25 26

JADE- 27 28 9110

7AE0- 80 00 00

JAE3. 0@ 08 29

JAEG- 24 28 9120

TAEE- 00 2¢ 20

TAEB- 26 2F 30

TAEE. 31 32 9130

TAF0- 00 00 33

JAF3. 34 35 36

TAF6- 37 38 9140

JAFE. 00 39 3A

TAFB- 3B 3C 30

JAFE. 3E IF 9150
9160 -

T600- 9170 READ&R

7ca0- 9180 READ2R

7000- 9190 READGL .

7EQ0. 9200 READAL

7700 9210 READ2L

2040 9220 BUFMEM

9550- 9230 BUFEND
9250 .

2050 9260 22S512E

END OF LISTING 2

0000020000000000 80.87

0200020020000000 85-8F

S200020080080081 90-97

0000020300040506 98-9F

ORI00RACA00EATRE AG-AT

AP000RASEAREACR0 AB.AF

OROOOEAF 19111213 BO-07

001415161718191A BB-BF

a0000RA0RALEA00R CO-CT

00000 18091CI0DLE CH-CF

A000001FRICR202]1 DO-D7

#022232425262728 0B-DF

F00C00A0RI292A28 ER-E7

@02C20262F303132 EB-EF

2009333435363738 FO-F7

@0393A3IBICIDILIF FB-FI

siee
siee
100
si100
sie0
5469

+-SETUP PROGRAM SIZE

PLACE WRTABL IN SPARSE READGR
.BS §7ABD-« NOVE UP TO LAST 80 BYTES IN PAGE

WRITE PRENIBULE BUFFER

Listing 1 for DOS Device Detective
DETECTIVE Source Code

SOURCE FILE: DETECTIVE §

oo 1« DETECTIVE

0900 - 2 « BY JOHN VOKEY

0000 3 « COPYRIGHT 1987 BY NMICROSPARC. INC

a0 4 « CONCORD, WA 01742

0a00 S « DOS 3 3 TOOLKIT ASSEMBLER

ea00: 6 .

----- NEXT OBJECT FILE NAME IS DETECTIVE

SBE3: 7 ORG $9009-3110

98E3 8

$8E]: 9 Instatl

9BE3: 19 »

9BE3: ¢ B3]

9BEI: 12 (ovvr e

9BE3: 13 ; To execute the code:

98Ly: : BRUN DETECTIVE. AS2000

9BEI: 0 BB eeeeeeeeeeeeeeeeeecacecceaeaeaaas

9BE3:

9000 55000 1st buffer pointer
AAST - 18 BUFCNT EQU SAAS? # of butfers loc
AJD4: 19 BUFELD EQU SATD4 bBuild buffers subroutine
V000 20 CODLOC EQU SO Tewmp locs tor Create
9BE3: 213

2010 22 BOOTLOC EQU 5200043510

9BEI:AZ N 23 DX vs0 eng page to move
9BE5-8D 10 20 24 LOOP LDA BOOTLOC.X

9BES 9D 89 5C 25 STA SCHMORY X

9BE8 E8 26 INX

9BEC. DO F7 27 BNE LOOP

9BEE 20 B7 9C 28 JSR ATTACH Patch DOS

9BF1-A9 00 29 INSTALL LDA #>SCHDRV

98F3 85 00 STA CODLOC

98F5 A9 9C LDA #<SCHDRV

YHF7 8BS @1 SI1A LouLoLs

98F9 A9 03 LDA a3

98F8 85 02 STA COOLOC+2

SOFD 4C E6 5C JNP CREATE move buffers exit
9Cee:

aces ===

9con EQUATES

9Co0

9CoR

BICY: EQU $BiCS search VTOC for file
AB28 EQU saB28 Common OPEN routine
B5Co EQU sasce FileNanager drive
B5C1 . EQU FMDRV+1 FileNanager slot
AAGS EQU SAA&8 Default Drive
AAGA EQU DEFDRV+2 Default Slot

B5F7 EQU $B5F7 Work area slot
BSF8 EQU MASLT+1 Work area drive
AB4G EQU sABas OPEN reentry point
o0A2 EQU SA2 DOS card signature byte
B398 QU sBI9EB File Manager S save
B3AF EQU $B3IAF “DISX VOLUME"

ASarF EQU SAS4F INIT command handler
AB43 EQU sABal 00S patch location
9Ce0

9C80: 56 s====sssssssosssssooossosssssess

9Ce0 Search Drives

w«wceo

9L

9C00.20 68 9C JSR LOCFIL File in VTOC?
9C03:9¢0 10 BCC DONE Yes, done

9C@s AD Co BS LDA FHDRY No. try other drive
9Ce8 49 03 EOR ¢3 comp lenent

9CPA BD Ca BS STA FMDRY

9CP0 CD 68 AA CMP DEFDRV done both drives?
9C10.Fe 12 BEQ NEWSLT Yes, next silot
9C12:4C 28 AB JNP COMOPEN No. try again
9c1s

9C1S

9c1s File Found

9C15-

9C15 -

9C15 AD C1 BS LDA FNSLT set new defaults
9C18:8D0 6A AA STA DEFSLY

9C1B.AD Ce BS LOA FNDRV

9CIE-8D 68 AA STA DEFDRY

SC21:4C 46 A8 77 our JNP BACKIN and exit

9c24 78 |

5C24 7% .

9C24 80 New Slot

9C24 81

924 82

SC24:AD C1 BS B3 NEWSLT LDA FMSLT get currant slot

9C27:40 6A AA

$C2C 80 Ci 8%

9C2r L C1 8%

2g28s
2

23
2

8
%
2233822285833
3

2

]

8
222

SC73 AE 98 B)
9C76 8E 81 9%C

WA L BB
9C7E 4C CO B

9CB4:A9

9CE3 &
9CES 32 %

ECR DEFSLT some as defauit?
BNE CHGSLY No. not st pass
STA FMSLT
: Change Silet
P e T T
CHGSLY INC FMSLT next slot. please
LDA FMSLY
CNP DEFSLY Defavit siot?
BEQ OMGSLY Yes, try again
Any left?
No, exit

check for DOS caro
(self-mooitied code)
HEt si@ byte

005 Card?

Yeas. sesarch drives
No, next slot

o8

109 NOTFOUND LDA DEFDRV restore defouits

e STA FMORY

m STA WADRY

12 LDA DEFSLY

13 STA FMSLY

134 ASL A

135 ASL A

116 ASL A

137 ASL A

118 STA WASLY (slot « 16)

119 JSR LOCFIL allocate file

120 SEC

121 8cs ouT and exit

122

129 ssrcoscssscrsasssssssssssssEsaNNs

124 . Check for File & Trap 1/0 arror

125 ersssscozsEsssssssssmmsssssssssses

126

127 LOCFIL JSR GETFIL force FM to return here
128 LDA SAVSTK restore true caller
129 STA SREG

0 RYS

i

)2 GEYFIL TXA save X

15 3) SREG get stashed stack pointer
134 $TX SavsTx save

13% TSX force LOCFIL as return
136 STX SREG

19 TAX recover X

138 JNF ALLOC and attlenmpt to locate Tile
139 SAVSTX OFB O

140

T —————

142 Disconnect Patch on INIT

14) .ereErEEIzEsssssssewmsrEEmosEsEEEs

144

145 INITFIX JSR DISCON disconnect Patch

146 JWP O INIT and do INIY command
147

148 swmzzzzz==

149 Disconnect Patch

150 . pop—

181

182 DISCON LDX w11 restore Original header

153 LOOP2 LOA MSGE X

154 STA HEADER X

155 DEX

156 BPL LOOP2

157 wx 2 restore DOS code
158 LOOPS LDA FIX1.X

1% STA PATOH X

160 DA FiIXz.x

161 STA INIT X

162 oix

163 BFL LOOP3

164 MSB ON

168 LST ON GEN

166 RTS and return
167 MSGE ASC ENULOV KSID®
168 FIXx) DFE 320.35C9 sm)

169 Fix2 DF8 SA9 540,520

170

171 » i essssss
172 . Attach Paten

173 «sssswsnszz=== —

174

175 ATTACH DX rll new heacder
176 LOOPS LDA MSGE2. X

172 STA HEADER X

irs DEX

179 BPL LOOPA

180 Lox #2 Patch D08 code
183 LODPS LDA PCHI. X

102 STA PATCH X

183 LDA PCHZ X

184 STA INIT X

185 DEX

186 BPL LOOPS

18? RYS and return
188 MsGE2 ASC EVITCETED"
189 PO OF8 s4c

19¢ ON SCHORYV

191 PCH2 0F8 sécC

192 o INLTFIX

ICES 9

9CES 194 (S EIEFEEESASEssNsRR R sRe s T s e

ICES 19 . Create Space

9CE6 196 «on 3333 ceeerr

9CE6 197

CE6 A 0 198 CREATE LDA COOLOC get low byte of space
9CES .38 19 SEC

SCESE9 26 00 SBC w326 name. pointers. etc
SCEB:8D 00 9D 201 STA BUFPTR

SCEL:AS 01 202 LDA COOLOC+1

9CFO.E9 OO0 20 SBC w0

9CF2:80 01 90 204 STA BUFPTR+!

SCFB:AS 02 208 LDA COOLOC+2 get number of buffers
9CF7:8D 57 AR 206 STA BUFCNT

GCFA-4C DA A7 207 JMP BUFBLD rebui 1d buffers, exit

ees SUCCESSFUL ASSEMBLY NO ERRORS
END OF LISTING 1

Note: Key Perfect addresses do not match Listing

KEY PERFECT 5.9

RUN ON
DETECTIVE

" CODE-5.0 ADDR# - ADDR# CODE-4.0
BSE9665F 2000 - 204F 2769
9B77ECC7 2050 - 209F 2008
78946536 20A0 - 20EF 2975
9BC54560 20F0 - 2119 1476
C630353C = PROGRAM TOTAL = O11A

Listing 2 for DOS Device Detective
DETECTIVE Hex Listing

2000- A2 00 BD 1D 20
2008- E8 DO F7 20 B7
2010- 85 00 A9 9C 85 01
2018- 85 02 4C E6 9C
2020- 90 10 AD CO BS
2028- CO BS CD 68 AA
2030- 28 AB AD C1 BS
2038- AD CO B5 8D 68
2040- AB AD C1 B5 4D
2048- 03 8D C1 BS EE C1
2050- C1 B5 CD 6A AA
2058- 08 BO QE 09 CO
2060- AD 00 CO C9 A2
2068- E3 AD 68 AA 8D
2070- F8 BS 6A
2078- OA OA 0A
2080- 68 9C BO
2088- AD 81 8D
2090- AE 98B B3 B8E 81
2098- 9B B3 4ac
20A0- 88 9C 4C 4F
20A8- A5 9C AF
20B0- A2 02
20B8- BD B4
20C0- F1 60
20C8- D6 A0
2000- Bl A9
20D8- 9C 9D
20EG- 02 BD
20E8- E3 9C
20F0- 60 A0
20F8- C3 C5
2100- 4C 82
2108- 8D 00
2110- 01 90
2118- D4 A7

00
A9
A9
68
23
FO 12 4C
6A
4C
AA
B5
F5
45
cs8
B5
8D C1 BS
B5 20
B9 20 72 9C
60 BA
BA B8E
00 20
oB
CA 10 F7
43
CA 10
cc
20
BD
CA 10 F7
AB
CA 10 F1
c9
00
E9
00
AA 4C

END OF LISTING 2

Listing 3 for DOS Device Detective
DETECTIVE.DEMO

10
20
30
40
50
60
70
80
90

100
110

120
130
140
150
160

170
180
190
200
210

220

230
240
250

260
270

280
290

300
310

320
330
340
350
360

370
380
390
400

410

420

430
440
450

460
470
480
490

500
510

REM
REM
REM «
REM -«
REM -«
REM «

LR AR R R R R)
DETECTIVE .DEMO .
BY JOHN R. VOKEY -«
COPYRIGHT (C) 1987 -«
BY MICROSPARC, INC «
CONCORD., MA 01742 -«
REM sesvvestvescrtvnstnsns

REM DISPLAY TITLE PAGE

PRINT CHRS (14): CHRS (21):
43624:SLOT = DRIVE + 2
COLOR= 2: GOSUB 470
POKE 33,38: POKE 32,1:
5.23
FOR I = 5 TO 21: READ SS$
FOR J = 23 TO I STEP - 1
VTAB J: GOSUB 490
NEXT : NEXT
DATA DOS DEVICE DETECTIVE,DEVICE-INDE
PENDENT DOS,BY JOHMN VOKEY,,,.,.,.COPYRIG
HT (C) 1987
DATA MICROSPARC INC.

DATA CONCORD MA 01742

DATA: oren

REM INSTALL PATCH

PRINT : PRINT CHRS (4)"BRUN DETECTIVE A
$2000"

VTAB 10: HTAB 12: PRINT "<PATCH INSTALLE

D>~

REM DELAY FOR 1000 OR KEY

VTAB 24: HTAB 15: INVERSE

PRINT “PRESS <RETURN>";: NORMAL :
16368,.0: FOR I = 1 TO 500:
16384) < 128 THEN NEXT

REM DISPLAY INSTRUCTIONS

VTAB 7: CALL - 958: FOR I = 9 TO 12: READ
S$: FOR J = 23 TO I STEP - 1: VTAB J

GOSuB 490

NEXT : NEXT : VTAB 24: HTAB 15:
¢ PRINT *]

14 SPACES

DATA PLEASE INSERT THE DETECTIVE DISK

DATA INTO ANY DRIVE ON THE SYSTEM,(OR N

OT AT ALL!)

DATA THEN PRESS <RETURN>

ONERR GUTO 519

POKE - 16368.0

REM AWAIT KEYPRESS

VTAB 13: HTAB 19: GET S$:
(13) AND S$ < > CHRS (27) THEN 360

IF S$ = CHRS (27) THEN 450

REM SEARCH FOR FILE

PRINT : IF NOT ERR THEN PRINT CHRS (4
)"VERIFY DETECTIVE"

IF ERR THEN VTAB 20: HTAB 6: PRINT CHRS
(7) :"DETECTIVE IS NOT ON THE SYSTEM"

IF NOT ERR THEN VTAB 20: HTAB 6: PRINT
CHRS (7):"DETECTIVE IS IN SLOT " PEEK (

SLOT)", DRIVE " PEEK (DRIVE)

ERR = ©0: VTAB 24: HTAB 15. INVERSE
"<ESC> TO EXIT “:: NORMAL
GOTO 360
REM EXIT
POKE - 16368.0: TEXT : HOME
O: END
REM FRAME SUBROUTINE
HLIN 0.39 AT 1:
9.K: PLOT 39.K: NEXT :

REM PRINT SUBROUTINE
HTAB (41 LEN (S$)) 7/ 2: PRINT S§;:
- 958: RETURN
REM ON ERR TRAP
ERR = PEEK (222):

HOME :DRIVE =

POKE 34,1: POKE 3

POKE -
IF PEEK (

INVERSE
: NORMAL : REM

IF S$ < > CHRS

: PRINT

: POKE 216,

CALL

RESUME

END OF LISTING 3

FOR K = 1 TO 47 STEP 2: PLOT
HLIN 0,39 AT 47: RETURN

A Matter of Timing
Article on page 70

Listing 1 for A Matter of Timing

CLOCK.TEST

PNV AWN-S

LELL

@3
313
LERLY
e
e
231
i
931E
0320
0322
0324
0326
0327
0329

M0 Errors

0300
| 0328
| oe2c
| 7886

Listing 2 for A Matter of Timing

AB FC

sessssssnsansans tsrasmrnean sesesssssssassnnans “een
CLOCK TEST

by S Scott Zimmerman

Copyright (c) 1987

* MicroSPARC

TiNDX
WALY
BELL

TINCNT

PAUSLOOP

SECLOOP

TivELOOP

CECINDX

ORG
EQu

EQu
EQU

EQU

Loy
LDA
JSR
DEY
BPL
JSR
LoY
LoA
STA
LDA
STA
NOP
LoA
ENE
DEC
OEC
LOW
ORA
BNE
DEY
BNE

by WiCroSPARC

Inc

Concord, WA 01742

..................... Srssssssssssssssansstansnnne

Assenbler 3.0
389
sis Time loop Index
SFCAS .Pause accun amount
SFF3A (Bewp routine
$B511L cinner loop time count
vie Make & pause before
¥SFF ;ostarting test
WALT GO wailt 2 white

(End of pause loop?
PAUSLOOP :No, go loop again
BELL (Yes. sounc start boep
L1 ;Set index for “seconds”
FTINCNT :Set the time loop index
TINDX i to TINCNT
ATINCNT /
TINDX=L

Copty loop
TiNgx Lo 2 16 b1t (doudle
DECINOX precision) decrement
TINDX+1 Oec HOB as necdeo
TINDX Always dec LOB
TINOX Is the time index zero?
TINDK«1
TIMELCOP (No. 30 loop again

Yes. End ot "sec” loop?
SECLOOP No. loop again
BELL (Yes, so do end beep

Hex Start of Object
Hex end of Object
Hex Length of Object
Hex end of Symbols

END OF LISTING 1

AMPER.MUSIC

Jwe

esbssssssssannre berbessansanenn esssssssesnnannn

.

Sadssssrsessnasaninn

ORG

« lero-page

......... dessscancnsrnrranan

PITCH
DURATION
rREQ
DURCNT
STOPFLG

RESUNTOK
STOPTOX

QU
EQu
L
EQU
fQu

EQu
£

AMPER NUSIC

by S Scott Zimmerman
Copyright (c) 1987

by MicroSPARC,

Inc

Concord. WA OL742
MicroSPARC Assenbler § 0

$2E4

Start an input buffer

Fiteh paramoter
Duration paraseter
Frequency
Ouration cownt
Stop flag for no sownd

Applesoft RESUME token

(Applesorft STOP token

B T

sessssnninn
.

PETTEELT TN

g loop

