
PREFACE

Thank you for buying the Sharp Personal Computer MZ-80 series Floppy DOS.

To make the best use of the Floppy DOS, read the instruction manual thoroughly and perform the

operations described correctly; this will enable you to make most effective use of the system.

- The master disk cannot be replaced after it is purchased; therefore be sure to use the COPY command

to create a submaster disk for normal use.

- It is particularly important to read and understand the explanations of the following commands before

using Floppy DOS .

• 	 FORMAT command (page 41 of the System Command manual)

Before using Floppy DOS with a new disk, it must be formatted and initialized for Floppy DOS.

The file contents of disks initIalized for use with other systems (e.q., SB-65 I 0 or SB-661 0) will be

destroyed if used with this system. Likewise, disks initialized with Floppy DOS cannot be used with

other systems.

• 	 COpy command (page 35 of the System Command manual)

This command allows creation of submaster disks from the master disk and of backup disks for slave

disks.

- Since the Floppy DOS operating insturctions are divided into several parts, a guide is included to

enable easy reference as needed. Full understanding of Floppy DOS is not a prerequisite to making

active use of it; refer to the guide as needed and your knowledge of the system will grow as you use it.

s·,

PRODUCT GUIDE

The following materials are included in this group of products.

System Command Instruction Manual

Text Editor Instruction Manual

Z-80 Assembler Instruction Manual

Symbolic Debugger Instruction Manual

Linker Instruction Manual

Programming Utility Instruction Manual

PROM FORMATTER

EXAMPLE OF PLOTTER CONTROL APPLICATION

Library jPackage Instruction Manual

Appendix

Floppy DOS Master Disk

Also, the following files are included In Floppy DOS Master disk. Refer to the various instruction

manuals for details.

File name Applicable command or manual Function

ASM. SYS ASM Z80 Assembler
EDIT. SYS EDIT Text editing
LINK. SYS LINK Linker
MLINK. SYS MLINK Linker
& DEB &. SYS DEBUG Symbolic debugger
PROM. SYS PROM PROM formatter
BASIC. SYS BASIC BASIC compiler (sold separately)
FORMAT. SYS FORMAT Fonnatting disks
COPY. SYS COpy Copying disks
HCOPY . SYS HCOPY Copying one frame on CRT
LIMIT. SYS LIMIT Floppy DOS management area declaration
LOAD. SYS LOAD Loading object files
ASSIGN. SYS ASSIGN Device definition
STATUS.SYS STATUS Device status control
CONVERT.SYS CONVERT File mode conversion
PTRP. ASC 11 Appendix 11 Paper tape reader/punch control
PTRP.OBl "Appendix" Paper tape reader/punch control
SIO . ASC " Appendix" RS 232C con trol
SIO .OBJ 11 Appendix 11 RS 232C control
CMT1 . ASC "Appendix" MZ-80K cassette tape control
CMT1 .OBJ "Appendix" MZ-80K cassette tape control
START-UP. ASC 11 System Command 11 Key definition
LOADAUX. ASC 11 System Command 11 Loading auxiliary device controller
MONEQU. ASC 11 Library /Package 11 Monitor library source file
MONEQU . LIB "Library/Package" Library me for the above
DOSEQU. ASC 11 Lib rary /Package 11 Floppy DOS library source me
DOSEQU . LIB "Library/Package" Library file for the above
IS10EQU . ASC SB-IS10 monitor library source file
lS10EQU . LIB Library file for the above

<?tELO . LIB 11 Library /Package 11 BASIC compiler library me
SB-IS11 . RB SB-IS11 monitor relocatable file

S-2

-GUIDE TO USE OF THESE PUBLICATIONS-

Start

Want to know the basics of Floppy
DOS and the system programs?

Want to run the computer
immediately?

Want to run programs generated by
a cassette tape based system under
Floppy DOS?

Want to develop programs using only
standard devices supported by FDOS?

Want to use user-supplied devices in
addition to standard devices?

Want to develop programs using
Floppy DOS libraries?

Want to link with programs generated
by the optional BASIC compiler?

Want to develop object programs using
a PROM writer?

Want to refer to system error
messages?

~

' .

See the explanations under "SYSTEM
yes PROGRAM ORGANIZATION" in the

System Command Instruction
Manual.

See the explanations under "COPY"yes
and "FORMAT" in the System
Command Instruction Manual.

See the explanations under "CONyes
VERT" in the System Command
Instruction Manual.

See the explanations under" DOS
COMMAND USAGE" in the System
Command Instruction Manual

yes and the following reference manuals :
Test Editor
Z-80 Assembler
Linker
Symbolic Debugger

yes 	 See the expl'lnations under "User
I/O Routine" in Appendix in
addition to the above manuals.

See the explanations under "LINKING
yes 	 ASSEMBL Y PROGRAM WITH Floppy

DOS" in Appendix, and Library/Packag
in addition to the above manuals.

See "CONVERT" in System Command,
yes "EXAMPLE OF PLOTTER CONTROL

APPLICATION" in Programming
Utility and BASIC Compiler, as well
as references indicated in 4 above.

yes 	 See the explanations under "PROM
formatter" in Programming Utility .

yes 	 See "System Error Messages" in the
System Command Instruction Manual.

S-3

I

-OPTIONAL Floppy DOS PROGRAM PRODUCTS

BASIC Compiler SB-7701 (Previously released)

Requirements: o Floppy DOS and 64K bytes of RAM

Major features: o Fast execution.

o DOS commands can be invoked from BASIC programs.

o Can be linked to assembly language programs.

Compilation mode: o Compiles a source file (source program) and generates a relocatable file (RB

file) which can be linked and loaded with the DOS LINK command.

Compatibility: o 	Programs developed by the SB-5000 and SB-6000 series must be converted to

the Floppy DOS format by the DOS CONVERT command before com

pilation. Some BASIC commands (file handing commands) may differ in

syntax. Excessively large programs may not be compilable (source programs

are limited to about IOK bytes).

Packaging: 	 The BASIC compiler is available on cassette tape with a reference manual. The

compiler should be copied onto the submaster disk so that it must be run

under Floppy DOS control.

S-4

Personal Computer

111Z-00ODU

SHARP

NOTICE
The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini
floppy disk files).
This manual is for reference only and the SHARP CORPORATION will not be res
ponsible for difficulties arising out of inconsistencies caused by version changes,

IMPORTANT!

The personal computer MZ-80B contains 32K byte RAM as standard equipment.

When you use system software that requires the disk drive access (DISK BASIC,

FOOS, etc.), it is necessary to expand the existing RAM area to 64K bytes.

SHARP CORPORATOIN ·

TCAUZ0012PAZZ(E)
Printed in Japan

GUIDE TO USE OF THIS MANUAL

Want to know the basic prin
ciples of the assembler, text
editor, linker and symbolic
debugger?

Want to know the basic
principle and specifications
of the MZ-80B Floppy DOS?

Want to run the computer
immediately?

Want to develop programs
under Floppy DOS?

Want to link with programs
generated by the optional
BASIC compiler?

Want to add new commands
to a Floppy DOS library?

yesWant to defme user-supplied
I/O devices in Floppy DOS?

yesWant to refer to the system

yes

yes

yes

yes

yes

no

yes

See Sections 1 and 2 (pages 1 - 13).
(Readers may skip these sections.)

See Section 3 (pages 14 - 18).
(Readers may skip this section.)

See Section 4 (page 41 and 35). Read the explanations
about the FORMAT and COPY commands.

Read Section 4 (pages 18 - 64) throughly.

Read Section 4 (pages 18 - 64) throughly, as well as
the following manuals:
BASIC Compiler
Library/Package
"EXAMPLE OF PLOTTER CONTROL APPLICATION"
in Programming Utility

Read Section 4 (pages 18 - 64) throughly, as well as
Library/Package and "LINKING ASSEMBLY
PROGRAM WITH Floppy DOS" in Appendix.

Read Section 4 (pages 18 - 64) throughly (especially
the explanations about the LIMIT, ASSIGN, LOAD and
STATUS commands). Read "User I/O Routine" in
Appendix.

error message?

See "System Error Messages" in this manual. (page 63)

End

SY8-i

1 11I I iI II1 I ii I mu ! I li 11 11 I 11.IU I YIIIIIIIl III

--CONTENTS -

1. THE MEANING OF "CLEAN COMPUTER"

2. SYSTEM PROGRAM ORGANIZATION ,
 3

42.1 Text Editor Functions .. ,

2.2 Assembly Procedures 5

2.3 Linker .. . 9

2.4 Symbolic Debugger 11

2.5 PROM Formatter '...... . 13

3. Floppy DOS ORGANIZATION 14 ~

3.1 Boot Linker .. . 15 "---'

3.2 IOCS 15

3.3 Dynamic Segmentation 17

4. DOS COMMAND USAGE 19

4.1 Program Development Under Floppy DOS 19

4.2 FDOS Control Keys 20

4.2.1 Main keyboard 20

4.2.2 Automatic repeat function 21

4.2.3 Cursor control keys 21

4.2.4 Initial settings 21

4.2.5 Differences between the SB-1511 and SB-151 0 22

4.3 DOS Command Coding Rules 23

4.3.1 Command line format : 23

4.3.2 File name .. . 23

4.3.3 File modes 24

4.3.4 File attributes 24

4.3.5 File types .. . 24

4.3.6 Wildcard characters 25

4.3.7 Drive number and volume number 25

4.3.8 Basic device name 25

4.3.9 Auxiliary device name 26

4.3.10 Switches 27

4.3.11 Default assumptions 28

4.3.12 Arguments 29

~

SYS-jj

1 1

4.4
 Using DOS Commands , 30

4.4.1 ASM... 30

4.4.2 ASSIGN.. 31

4.4.3 BASIC... 31

4.4.4 BOOT .. 32

4.4.5 CHATR.. 32

4.4.6 CONSOLE.. 33

4.4.7 CONVERT .. 34

4.4.8 COpy.. 35

4.4.9 DATE .. 36

4.4.10 DEBUG .. 37

4.4.11 DELETE ... 38

4.4.12 DIR ... 38

4.4.13 EDIT ~ 39

4.4.14 EXEC .. 40

4.4.15 FAST .. 41

4.4.16 FORMAT ... 41

4.4.17 FREE................... .. 42

4.4.18 HCOPY ~ 43

4.4.19 KEY ... 43

4.4.20 KLIST ... 44

4.4.21 LIBRARY .. 45

4.4.22 LIMIT ... 45

4.4.23 LINK .. 46

4.4.24 LOAD ... 47

4.4.25 MLINK ... 47

4.4.26 MON .. 48

4.4.27 PAGE .. 49

4.4.28 POKE .. 49

4.4.29 PROM ... 50

4.4.30 RENAME.... .. 50

4.4.31 REW 51

,~

SYS-iii

I 1 IIII 11 lID

4.4.32 RUN ... 51

4.4.33 SIGN .. 52

4.4.34 STATUS 53

4.4.35 TIME .. 53

4.4.36 TYPE .. 54

4.4.37 VERIFY .. 54

4.4.38 XFER. .. 55

4.5 DOS Command Summary 57

4.6 System Error Messages , 63

5. MUTUAL CONVERSION 65

SYS-iv

1. THE MEANING OF "CLEAN COMPUTER"

Three important developments accompanied the shift from the boom in microcomputer kits to the

entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROM devices so that they became readily available.

This development eliminated the need to devote great amounts of time and effort to compressing

system functions to the maximum extent possible to conserve valuable memory for user programs. Now

it is more important that system programs be written and managed in a structured manner and that their

overall usefulness be raised. It is more and more apparent that what the user comes in contact with is not

so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities became available.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner or later

charge coupled devices and magnetic bubble memories will be used in this capacity. This suggests that

there will be increasing stratification of programs culminating in operating systems, and that the efficiency

of systems will also increase. From the user's point of view, this means that a wide variety of programs will

be readily available for use.

(3) The development 	of various peripheral circuit LSls has made possible realization of efficient inter

faces with high performance terminals.

This means the main concern of the user in the future will be with how many functions are provided

in a system and how useful they are. In terms of the contents of the system, the main concern will be in

developing operating systems capable of organically combining terminals and program processing with

a minimum of effort on the part of the user. It is even possible that real time processing of multiple tasks

and jobs on a level approaching that of minicomputers will become possible with the operating systems

of microcomputers.

As is apparent, it is extremely difficult to predict the extent to which computers will evolve as integ

rated circuit technology and program language theory become widely dispersed. This tends to undermine

the belief which some people have that rapid changes in hardware result in good computers.

Although the name "clean computer" has been given to the MZ-80 series, computers are basically clean

in principle. As the field of personal computers opens, the concept of embedding a single language,

BASIC, in ROM has become a hindrance to use of full computer capacity. Out of consideration for the

many different types of service which will be required by users as yet-to-be developed technology comes

into use in the future, it will be necessary to preserve the cleanliness of the computer to the maximum

degree possible to minimize constraints placed on its use. The ultimate ends to which computers are

applied will be determined by the junction of technological possibilities and user requirements; the only

other limits imposed are those which are inherent in the fact that the computer is nothing more than a

machine. In order for computers and users to get along well together, it is necessary that computers be

~ 	designed with a minimum of constraints so that they can be suited to user requirements, rather than the

other way around. In other words, the usefulness of the computer and the efficiency of the service it pro

vides depends on how clean it is.

SVS-1

The explanations in these publications are intended to show how flexible the MZ-80 series of computers

is in terms of system development. A tape-based program development system is provided to enable inex

pensive development of small programs; the floppy disk operating system (Floppy DOS) was developed to

assist with the creation of large programs which require large quantities of memory. The functions and

configuration of Floppy DOS are suited to a range of applications approaching those provided by a low

level minicomputer. We think that the software technology and utilization procedures applied in this

system will open a new world of possibilities for personal computers.

SYS-2

2. SYSTEM PROGRAM ORGANIZATION

SHARP MZ-80B system programs include an assembler, a text editor, a linker and a symbolic debugger.

They are organized to execute a sequence of assembly phases.

Text editor
Source program editing

- Assembler
Assembly

Linker
Program relocation
and linkage

~ Symbolic debugger
Debugging

/ t
Object program

Fig. 2-1 Assembly phases

Figure 2-1 shows the assembly process, which consists of creating source programs, assembling them,

relocating and linking the assembly output and debugging them.

One cycle of the phases in the left half of the figure makes up a program creation stage. The pro

grammer prepares a source program with the text editor and creates a source file, then inputs it to the

assembler. The assembler analyzes and interprets the syntax of the source program and assembly language

instructions into relocatable binary code. When the assembler detects errors, it issues error messages. The

programmer then corrects the errors in the source program with the text editor.

After all assembly errors are corrected, the programmer inputs the relocatable object program (the

relocatable binary file), output by the assembler to the symbolic debugger. The symbolic debugger reads

the object program into the link area in an executable form and runs the program. During the debugging

phase, the programmer can set breakpoints in the program to start, interrupt and continue program exe

cution, and to display and alter register and memory contents for debugging purposes. If program logic

errors and execution inefficiency are detected during the debugging phases, the programmer reedits the

source program using the text editor.

After all bugs are removed from the source program, the programmer loads and links the program

unites) in the relocatable file(s) and creates an object program in executable form with the linker.

Each system program always generates an output file for use in other system programs. Figure 4-1

shows the in terrelationship of the system programs.

As shown above, the program development phases are executed by four independent system programs.

By assigning the system functions to separate programs, the MZ-80B can accomodate large-scale, serious

application programs, thus enhancing its program development capabilities. "PROM formatter" is pro

vided which punches object programs into paper tape in several formats for use with various PROM writers

now on the market.

The system program commands are listed in the last part of Appendix.

SVS-3

2.1 Text Editor Functions
The major functions of a text editor are to insert, delete and modify characters, words and/or lines.

If the editor does not allow the programmer to use these functions interactively and easily, he will have to

devote more effort to editing and modifying programs than to executing them. To alleviate this problem,

SHARP uses a command format which is almost perfectly compatible with that of the NOY A minicom

puter series from the Data General Corp.; this has been refined through the support of many uses.

The most important concern of the programmer in conjunction with the text editor is the concept of

the character pointer (CP) and its usage. During line-base editing, the CP is situated not on a line but

between two consecutive lines, as shown in Figure 2-2. Therefore, the location to/from which a lline is

to be inserted/deleted can uniquely identified. If the CP was located somewhere on a line, two locations

would be possible; that is, before and after the CP. The J and L in CP move commands are representative

commands which use this interline pointer concept.

During character-base editing, the CP is situated not on a character but between two consecutive charac

ters. This permits close editing. The programmer will become accustomed to the text editor quickly if

he is aware of what commands use the interline CP and what command use the intercharacter CP concept.

During normal editing sessions, several commands are combined to carry out an intended task. Such

commands can be placed on a line separated by separators so that the programmer lists them as they

come into his head.

B s:B! SM B!8l3J ICRI

,.;'1

• 1

4 -n

- L

L
D

LSP]
A

' --,,-
1 -'"00

H
ICR I

L
D

[SP]
B
,
7

ICR I
A
D
D

A
,

[SP] •

B

ICRI

~ Top of the edit buffer...
(beginning of the text)

Two or more commands can be J
specified by separating them with SM
the separator IR!!I •

Line 1 eE

2JIIIIIC7111113 ICRI;

C7~3
Line 2 Edit buffer \

Search for ADD starting at L rk;
the beginning of the edit buffer ~ ~

B II1II S;;;U II1II L 111112T ICRI~t
Line 3

Fig.2-2 Character pointer movement

SYS-4

2.2 Assembly Procedures
As the programmer becomes familiar with the Z-80 instructions, he is able to construct programs more

easily, even though he may feel difficulty in grasping the structure of large programs. At this stage, it is

not hard for the programmer to handle other microprocessors such as the M6800 and the F-8 with the

help of good r~ference manuals. One of the major reasons for this is the operating principles and architec

ture of most computers tend to be alike. It is therefore possible to develop a general purpose assembler

for such micro-processors. In this section, the technique employed in the MZ-80 assembler is described.

This will serve as a model for designing general-purpose assemblers.

The basic operation of any assembler is the interpretation of statements. It is therefore important to

establish a proper statement coding format. Figure 2-3 shows an example of a coding format, used in the

MZ-80 assembler, which is familiar to humans and which is easy for the computer to interpret.

Scanning the statements in this format, the assembler:

(I) Recognizes labels and stores them into the label table,

(2) Recognizes fields and assembles object codes,

(3) Generates an assembly listing, and

(4) Generates relocatable binary code.

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assembler if

it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (Figure 2.4)

and a 2-dimensional operation table (Table 1) are introduced.

Label Comment ..J

Field 2 Field 3 Field 4 Field 5

Fig. 2-3 Assembler coding format

SY8-5

The symbol # in the instruction list represents a register and the symbol $ represents a label or numeric

value. The assembler identifies each instruction by matching the read assembly statement with this listing.

As a result of this match, the assembler produces the major portion of the op-code, the byte length of the

instruction and its atom type. An atom type is one of the numbers identifying the instruction groups of

the Z-80 instruction set. As is seen from Table 1, there are 48 atom types; these are sufficient for newly

defined instructions.

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom type

01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits are to

be performed in that order. The control words identified by the set flag bits specify the actual operations

to be performed. Flag 3 indicates that this instruction must be a I-byte instruction, that it must shift the

data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4 indicates that

this atom type represents the LD r,r' operation.

Let us examine atom type 18. The set flag bits are 0, 1 and A. The control word for flag 1 is all zeros,

which means no operation. Flag A indicates that the instruction requires address modification (address

procedure) and that the address field must be not longer than 16 bits (size of the field). Thus, atom type

18 represents instructions such as JP nn' and JP NZ, nn'.

The above assembler operating procedure is summarized in Figure 2-5. Most of the assembly operations

involve table references. In fact, the assembler uses a register table, a separator table and a label table

during the assembly process, in addition to the instruction list and the 2-dimensional operation table. If

these tables are redefined to conform to a new instruction set the assembler may also be used as a cross

assembler.

01 0000
02 0000 INSTRUCTION LIST
03 0000
04 0000 SYMP: ENT
05 0000 4C442023 DFFM 'LD#,#' ; LIKE LD B, C
06 0004 2C23
07 0006 Fl DFFB FIH F delimits the instruction pattern. 1 indicates the length of

the instruction in bytes.
08 0007 40 DFFB 40H Main portion of the mnemonic code
09 0008 01 DFFB 01H Atom type

~

10 0009 4C442023 DFFM ' LD #, (IX$) , ; LIKE LD A, (IX+15)
11 OOOD 2C284958
12 0011 2429
13 0013 F3 DFFB F3H 3 indicates the length of the instruction in bytes.
14 0014 DD46 DFFW 46DDH DD4600 is the main portion of the mnemonic code. 15 0016 00 DFFB OOH
16 0017 03 DFFB 03H Atom type
17 0018 4C442023 DFFM ' LD #, (IY$) , ; LIKE LD B, (IY+AFC)
18 001C 2C284959
19 0020 2429
20 0022 F3 DFFB F3H
21 0023 FD46 DFFW 46FDH
22 0025 00 DFFB OOH
23 0026 03 DFFB 03H
24 0027 4C442028 DFFM 'LD (IX$), #' ; LIKE LD (IX+23), A
25 002B 49582429
26 002F 2C23
27 0031 F3 DFFB F3H
28 0032 DD70 DFFW 70DDH
29 0034 00 DFFB OOH
30 0035 04 DFFB 04H

Fig. 2.4 Instruction list (part)

SVS-6

Table 1 Two-dimensional operation table

Atom Description
I Flags (analyzed and processed in ascending flag bit number order)
t o 1 2 3 4 5 6 7 8 9 A B C D E F

00 Reserved
01 LD #,# 1 1 1
02 LD #, $ 1 1 1
03 LD #, (IX+$) LD #, (IY+$) 1 1 1 1
04 LD (IX+$), # LD (IY+$), # 1 1 1 1
05 LD (IX+$), $ LD (IY+$), $ 1 1 1 1
06 LD A, ($) 1 1 1
07 LD (~), A 1 1
08 LD BC, $ etc. 1 1 1
09 LD IX, $ LD IY, $ 1 1 1
OA LD HL, ($) 1 1 1
OB LD BC, ($) etc. 1 1 1
OC LD ($), HL 1 1
OD LD ($), BC etc. 1 1
OE ADD A, #etc. 1 1 1
OF ADD A, $ etc. 1 1 1
10 ADD A, (IX+$) etc. 1 1 1 1
11 INC # etc. 1 1
12 INC (IX+$) etc. 1 1 1
13 RLC # etc. 1 1
14 RLC (IX+$) etc. 1 1 1
15 BIT $, #etc. 1 1 1
16 BIT $, (HL) etc. 1 1
17 BIT $, (IX+$) etc. 1 1 1 1
18 JP NZ, $ etc. 1 1 1
19 JR C, $ etc. 1 1 1
lA JR $ DJNZ $ 1 1
IB SUB #etc. 1 1
lC SUB $ etc. 1 1
ID SUB (IX+$) etc. 1 1 1
lE RST $ 1 1
IF IN A, ($) 1 1 1
20 IN #, (C) 1 1
21 OUT ($), A 1 1
22 OUT (C), # 1 1 1
23
24 ~

~ ~ ~ ~
--..:::: ~~ - ~ 2E - -

2F
ADDRESS, PROCEDURE __._~~.f.J 1 1 1 1 1
MUST BE SINGLE 1 1 1 1 1 1 1 1
MUST BE ADR-2 ~- --.:--", ~. ~- 1

1 1 1

§ . 1 1 1
LEFT SHIFT POSITION 0

~ 1 1 1
~ ••'~;::t?.,..•..,..•.: I 1~'.:l~¥·~Hl, \ ~Js! .
0 -
0::: DON'T CARE E-c
Z
0 EQUATION PROCEDURE 1 1 1
u 1 1 1 1 1

1 1 1 1 1
SIZE OF FIELD

1 1 1
I . 1

SYS-7

LOC Oocation counter)

Perform register/table reference,
pattern conversion, shift and
other operations as specified
by the control words

Construct CRT listing

Fig. 2-5 General assembly flow (excluding assembler directive processing)

SVS-8

2.3 Linker
The linker loads and links two or more program units using external symbol referencing instruction

from relocatable files and generates absolute binary code in the link area and saves it into an object file.

The relocatable files contain control frames and external symbol information. The linker resolves external

symbol references and relocates the program units as described below.

(1) External symbol reference resolution

The linker refers to the symbol table when resolving external symbol references (see Figure 2-6). The

symbol table contains a 9-byte symbol table entry for each external symbol. A symbol table entry consists

of a 6-byte field containing the symbol name, a I-byte field containing the definition status, and a 2-byte

field containing an absolute address with which the symbol is defined or a relocation address.

When the linker encounters an external symbol reference while loading the program unit from a reloca

table file, it checks to determine whether the symbol has been cataloged in the symbol table.

(l) 	If it has not been cataloged, the linker enters it into the symbol table as a new undefined symbol,

,.---.... 	 loads the relocation address into the symbol table entry and loads code FFFFH into the operand

address of the instruction in memory.

(2) 	If it has been cataloged and defined, the linker loads the defined absolute address into the operand

address in memory.

(3) 	If it has been cataloged but not defined, the linker moves the old relocation address in the symbol

table entry to the operand address in memory and loads the new relocation address into the symbol

table entry.

Thus, the linker chains undefined references to each symbol and, when the symbol is defined, replaces

all reference addresses with the defined absolute address. In other words, when an external symbol defined

by the ENT assembler directive appears in the control frame, the linker enters the symbol into the symbol

table as a defined symbol and replaces all preceding operand addresses chained in memory (terminated by

FFFFH) with the absolute address defined. The programmer can examine the definition status of the

symbols using the table dump command.

An example of external symbol reference resolution follows. Assume that three program units are to be

linked and that each unit references subroutine SUB I in the third program unit (see Figure 2-8).

When the first CALL SUB I instruction is encountered in program unit I, the linker enters SUB I into

the symbol table as an undefined symbol, loads the operand address (relocation address 5001H in this

case) into which the value of the symbol is to be loaded into the 2-byte value field of the symbol table

entry and loads the code FFFFH into the operand address in memory (see Figure 2-8(a)).

When the CALL SUB 1 instruction is encountered twice in program unit 2, the tinker chains together

their operand addresses which reference SUB 1 (see Figure 2-8(b)). When SUB I is defiend in program unit

3, the linker designates SUB I as a defined symbol and loads all operand addresses referencing SUB 1 with

the defining absolute address. The end of the operand address chain is identified by the code FFFFH.

Figure 2-8(c) shows that SUB 1 is defined by absolute address 5544H. When the link er subsequently en

counters a CALL SUB 1 instruction, it immediately loads 5544H into the operand address of the instruc

tion since symbol SUB 1 has been defined.

SV5-g

0000 Monitor

12AO Floppy DOS

Unker

Loading area

} link area

r.-"'---:-:~~-:--~-l} Symbol table area

Stack area

FEOO Reserved

Fig. 2-6 Memory map for the linker

2 3 4 5 6 7 8 9I "

Symbol name 	 Defmition Address
status (value)

Fig. 2-7 Symbol table entry format

Program unit 1

?

CALL SUBl

?

END ,

r--

-'5000

2

CD I FF I FF I• Identifies the
location referenc

2 ing an undefined
symbol for the
first time (serving
as an end mark).

SUB1 table
SUBl 102101150 entry

2

CD 1 FF 1 FF ~
2

,CD I 01 I 50 -~
2

CD I 11 I 51 ~
2

SUBl 102111153 ~

This code indicates that ---.J.

the symbol is undefined.

(a)

Program unit 2

50002

CALL SUBl

2

CALL SUBl

2

END

n.5110

Operand
~5310 addresses

referencing
the symbol
are chained
together.

(b)

Program unit 3

5000
 CD I 44 I 55
"

CD 1 44 1 55 ,
CD I 44 I 55

\.

)
2

SUBl:ENT

XOR A

2

END

r-- 5110

r-

)
5310

~5544

SUBl :1«155D
r~TIllS code mdicates that

the symbol is defined.

(c)

Fig. 2-8 Example of external symbol reference chaining

SYS-10

(2) Program relocation

The linker relocates instructions referencing external symbols while linking the programs. For instruc

tions which reference internal symbols and for which relocation addresses are generated by the assembler,

however, the linker produces absolute addresses for the symbols by adding bias to the relocation

addresses.

Thus, the linker generates absolute binary code in the link area in an executable format which is de

pendent on the bias specified by the programmer when the program unit is loaded. When creating an

object file, the linker saves the absolute binary code from the link area in the file together with its loading

address and execution address.

2.4 Symbolic Debugger
The symbolic debugger inputs relocatable files under the same input conditions as the linker except

that it presunles that absolutable binary code is loaded into the link area in an immediately executable

form. The symbolic debugger permits the programmer to debug his program while running it.

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified

locations and check the system status at these points. The programmer specifies the breakpoints at which

program execution is interrupted. When a breakpoint is encountered, the symbolic debugger saves the

operation code at the address set as the breakpoint in the break table and replaces it with an RST 6

instruction (F7H) (see Figure 2-9).

The RST 6 instruction is a I-byte call instruction to address 30 in hexadecimal. Its operation is as

follows:

(SP - 1) +- PCH, (SP - 2) +- PCL

PC +- 0030H

Hexadecimal address 30H contains a jump instruction which transfers control to the breakpoint control

routine in the debugger.

Each breakpoint is associated with a break counter. A break is actually taken when the breakpoint is

reached the number of times specified by the break counter. Before the break count is reached, execution

is continued with the original operation code saved.

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and

displays them in the screen. When the program is restarted, the debugger restores the contents of the

register buffer to the CPU registers and pops the break address.

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in

decimal.

Replace

Breakpoint address Breakpoint
Oabel symbol) is set

Break count Variable count
.~

Break table entry

Object program

F7

Fig. 2-9 Breakpoint setting and breakpoint table fonnat

SV5-11

The symbolic debugger has indicative start and

memory list dump commands in addition to the

breakpoint setting command, execution command,

memory dump command and register command.

The indicative start (I) command displays contents

of the CPU registers with which the program is to

be executed for confirmation before actually

transferring control to the address designated by

the program counter (PC) displayed. For example,

when an I command is enterd, the display shown in

Figure 2-10 appears on the screen. When the pro

grammer pressed ICRI after confirming the CPU

register contents, the debugger initiates an indicative start as shown in Figure 2-11.

The above display shows that the program is to be s~arted
at address 7500 (hex) with the CPU register values shown.

Fig. 2-10 I command example

Register buffer

General-purpose
registers

Special-purpose
registers

AF BC DE HL
AF' BC' DE' HL'

SP IX IY
~--------------~

PC

Fig. 2-11 I command operation

The debugger restores the contents of
the general-purpose registers and special
purpose registers SP, IX, IY and I, then
the value of the PC and initiates pro
gram execution.

The memory list dump (D) command displays the machine code in the specified memory block with

one instruction on each line.

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure

2-12. With symbolic addresses, the programmer can specify any addresses in the program wherever the

program is located in memory.

The programmer can specify the following types of addresses symbolically:

(1) Addresses represented by a symbol

(2) The address of an instruction I to 6553510 lines away from the address represented by the symbol

(3) An address ±l to 6553510 bytes away from the address represented by the symbol

Of course, the programmer can also specify memory locations with absolute addresses.

For example, the program unit whose source program is shown at the left of Figure 2-12 is loaded into

memory by the debugger starting at hexadecimal address 7500, execution of a D command will display

a dump of the memory block as shown at the right

in Figure 2-12.

START: ENT
LD SP, START
CALL MSTP
XOR A
LD (? TABP), A
LD B,A

MAINO : ENT
LD A,OFH

Fig. 2-12 D Command

SYS·12

2.5 PROM Formatter
The PROM formatter generates formatted absolute binary code and stores it into paper tape under the

PTP control. It is the system backup software used to transfer object programs to the PROM writer.

Currently, the following paper tape output formats are supported (see Figure 2-13):

(1) BNPF format: Britronics, Intel and Takeda

(2) BIOF format: Takeda

(3) Hexadecimal format: Britronics, Takeda, Minato Electronics

(4) Binary format: Britronics

The variety of tape formats supported by the SHARP PROM formatter extends the application range

of programmable ROMs.

Fig. 2-13 Paper tape output formats

The PROM formatter is made up of format, the PTP and the PRT~ controls (See Figure 2-14). These

enable the programmer to perform foramt conversion.

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when reading

paper tape. In the formats using ASC IT code (BNPF, B 1 OF and hexadecimal), the most significant bit is

assigned even or odd parity. When even parity is used, for example, ASCIT code "A" (41 hexadecimal)

is punched as is, whereas "C" (43 hexadecimal) is converted to C3 in hexadecimal before being punched

by setting its MSB. The parity mode can be set using the P command with the desired switch assigned,

e.g. *P$PTP / PE / LF.

This PROM formatter assumes that the PTP /PTR interface is compatible with the RP-600 puncher/

reader from the Nada Electronics Laboratory. It can control RP-600 directly using the general-purpose I/O

card (MZ-BOI/0-2). It can also control other models, such as the DPT26A paper tape punch from Anritsu,

if I/O conforming to the punch specifications can be implemented on the general-purpose I/O card.

All Floppy DOS
devices other
than the $CMT
and$MEMAbsolute binary

program unit

PROM formatter

Formatter section

Format control
(Format conversion,
output to punch,
input from reader)

Fig. 2-14 PROM formatter configuration

SVS-13

Paper tape punch

Paper tape reader

3. Floppy DOS ORGANIZATION

Figure 3-1 shows the flIes which are run under control of the SHARP MZ-80B Floppy DOS. The

Floppy DOS has the following features:

(1) Multistatement processing.

(2) Default argument processing.

(3) Allows wild card characters in file references.

(4) File-oriented processing extended to I/O devices.

Boot/linker

IOCS

Text editor

Z-80 assembler

Linker

Floppy Symbolic debugger
DOS

PROM formatter

BASIC compiler

Built-in commands

Other transient commands

User programs

Reads and links system commands.

The standard devices include disk, tape unit, keyboard,
display unit, line printer, paper tape -punch and paper tape reader.

Include DIR, XFER, etc. (See Table 4-1)

Include LIBRARY, VERIFY, etc. (See Table 4-2)

Source files, re locatable fIles and object files created with this system

Fig. 3-1 FDOS fIle organization

0000 ,------------,
Figure 3-2 shows the memory map for the above

Reserved area

Monitor

system resources. Floppy DOS is made up of a re 12AO
Floppy DOS main section

sident section and an overlay section. Their resident Command interpreter,
boot tinker, supervisor

section includes: call procedure, work

(1) A command line interpreter which interpretes
utilities Resident area

and executes system commands.
IOCS main section

IOCS table, fIle

(2) A boot linker which reads and links command management
TPA I--~-----~~

files from the Floppy DOS disk.

(3) A supervisor call procedure which manages

system resources, including files.
Overlay area

(4) An I/O control system (IOeS) (transient area)

(5) A file management program which manages the

disk allocation map, file table and other infor Work segments
segment variables

mation. ZWORKO-ZWORK19

Stack area

FEOO

Fig. 3-2 Floppy DOS memory map

SVS-14

3.1 Boot Linker
The DOS transient commands (whose file mode is .SYS) are not resident in memory, but are stored

in relocatable files on the system disk. These programs exist not in absolute form but in relocatable

form . When they are invoked, boot linker relocates them and specifies their loading addresses (see Figure

3-3).

These relocatable system files differ from relocatable files generated by the assembler in the way in

which they are loaded into memory. The external symbol references of the system files have been re

solved; these are just relocated by the boot linker. Accordingly, the control frame associated with each

statement of the system programs contains only a field identifying the statement as having a relative

address or absolute data and containing the byte count of the statement. When a relative address is indi

cated in the control frame, the system adds loading bias to the relative address to form an absolute

address.

} Floppy DOS
r-----
I

Relocate iI

+
~.-~ -

• Transient area

transient "

Floppy DOS

(DOS commands

commands may be loaded in
arbitrary locations

Relocatable fIles within this area)

(identified by the .SYS me mode)

Monitor

Boot liilKer

I-
Absolute binary code

Fig. 3-3 Loading Floppy DOS transient command with the Floppy DOS boot linker

3.2loes
IOCS in Floppy DOS provides control over the display unit, cassette unit, floppy disk unit and printer.

The programmer can define other I/O devices using the ASSIGN command.

Control programs for such user I/O devices can be stored in external files and their names can be cata

loged in the IOCS table. They are invoked and executed by IOCS as required.

The actual file management programs form a hierarchical structure as shown in Figure 3-4. In the MZ

80B system, routines from the macro command programs to the device control programs are collectively

called the input/output control system (lOCS). Being of modular construction, these programs are as

independent of each other as possible. By hiding controls unique to I/O devices, such as device addres~

management and buffering, 10CS permits the programmer to handle these programs as logical files and to

control the I/O devices as general files.

The alternate start/stop feature is enabled during 10CS operations. The system temporarily suspends

the read operation when an alternate stop is effected during a data read. At this point, the programmer

can switch to the DOS command mode or continue the suspended 10CS operation by effecting an alter

nate start.

SY8-15

Fi
g.

 3
-4

H

ie
ra

rc
hi

ca
l s

tr
uc

tu
re

 o
f f

ile
 m

an
ag

em
en

t
pr

og
ra

m
s

Sy
st

em

pr
og

ra
m

Sym

bOl
i~d

eb
ug

ge
r
I
~

-
-
-
-
-
~
-
-
-
-
-
-

I P
R

O
M

 f
or

m
at

te
r

Fi
le

 m
an

ag
em

en
t

pr
og

ra
m

s

(I
)

rMacco
 c

om
m

an
d

<
 er ...

I p
ro

ya
m

,
C

J)

IO
eS

 C
ha

nn
el

 c
on

tr
ol

pr

og
ra

m

D
ev

ic
e

co
nt

ro
l

Fl
op

py
 d

is
k

C
as

se
tte

 t
ap

e
ti

n
e

pn
nt

er

Pa
pe

r
ta

pe

Pa
pe

r
ta

pe

K
ey

bo
ar

d
D

is
pl

ay
-u

ni
t

Se
ri

al
 I

/O

U
Se

r
de

vi
ce

pr

og
ra

m
s

co
nt

ro
U

er
 	

co
nt

ro
ll

er

co
nt

ro
ll

er

re
ad

er
 c

on
tr

ol
le

r
pu

nc
h

co
nt

ro
lle

r
co

nt
ro

ll
er

co

nt
ro

ll
er

co

nt
ro

ll
er

co

nt
ro

ll
er

D
ev

ic
es

Fl
op

py
 d

is
k

un
it

	
Sy

st
em

 c
as

se
tte

L

in
e

pr
in

te
r

Pa
pe

r
ta

pe
 r

ea
de

r
Pa

pe
r

ta
pe

 p
un

ch

Sy
st

em

Sy
st

em

ta
pe

 u
ni

t
ke

yb
oa

rd

di
sp

la
y

un
it

)
	

)
)

3.3 Dynamic Segmentation
Memory segmentation and relocation can be accomplished easily if a hardware relocation register is

used. However, no presently available 8-bit microprocessor has such a register. Consequently, methods of

simulating this function are commonly used. The boot linker previously mentioned can be thought of as a

variation of such simulations. Here, a method of memory segmentation and assignment which leaves the

memory image unchanged is described.

Two subroutines are used for memory segmentation as shown in Figure 3-5 and 3-6. These two subrou

tines and segment variables are maintained in fixed locations in the Floppy DOS main program area. They

are accessible to all programs. The 20 segment variables are initialized during preprocessing for each

command and assigned values so that no memory segment exists. They are redefined as required during

processing of each command, thus creating memory segments.

Fig. 3-5 Extending a specified segment
r------ -:. ---------:- - - - - - --- --,
I -. IA ~2 ; Segment No. {0-19) I _ I
I BC -+--: 500 ; 500 bytes I

: CALL DOPEN ; DYNAMIC OPEN- I
L....; ____________ -=- ___________ J

Segment No. Segment variables
0 ZWORK 0 : 5000

1 ZWORK 1 : 5500

2 ZWORK 2 : 6000+(500)

3 ZWORK 3 : 6500+(500)

4 ZWORK 4 : 7000+(500)

5 ZWORK 5 : 7500+(500)

6 ZWORK 6 : 8000+(500)

7 ZWORK 7 : 8500+(500)

18 ZWORK18 :29000+(500)

19 ZWORK19 :29500+(500)

(ZWORK 0)

(ZWORK 1) t--------i

(ZWORK 2) ~----I~

(ZWORKlsf l
(ZWORKI9)

Results
ZWORK 0 : 5000

ZWORK 1 : 5500

ZWORK 2: 6500

ZWORK 3: 7000

ZWORK 4: 7500

ZWORK 5: 8000

ZWORK 6: 8500

ZWORK 7: 9000

ZWORK18 : 29500

ZWORK19 : 30000

(ZWORK 0)

(ZWORK 1) 1------/

(ZWORK 2) 1--......:...-----4

Fig. 3-6 Deleting a specified segment
r--------------------------,
I A+-2 ; Segment No. ,(0-19) I

: B~ +- 500 ; 500 bytes :
I CALL DDELET ; DYNAMIC DELETE IL ______ ~ ________________J

Segment No. Segment variables Results
0 ZWORK 0: 5000 ZWORK 0: 5000

1 ZWORK 1 : 5500 ZWORK 1 : 5500
2 ZWORK 2 : 6000-(500) ZWORK 2 : 5500
3 ZWORK 3: 6500-(500) ZWORK 3 : 6000
4 ZWORK 4: 7000-(500) ZWORK 4 : 6500
5 ZWORK 5 : 7500-(500) ZWORK 5 : 7000
6 ZWORK 6: 8000-(500) ZWORK 6: 7500
7 ZWORK 7: 8500-(500) ZWORK 7 : 8000

18 ZWORK18 :29000-(500) ZWORK18 : 28500

19 ZWORK19 :29500-(500) ZWORK19 : 29000

(ZWORK 0)8 (ZWORK O)~
(ZWORK 1) (ZWORK 1)

(ZWORK 2)

(ZWORK 2) ~ (ZWORK 3)

(ZWORK18) (ZWORK19)

(ZWORK19)

SYS-17

--
--

--
--

--
--

-
--

--
--

--
--

--
--

-

F
ig

.
3-

7
A

ct
iv

at
io

n
o

f
Se

gm
en

ts
 b

y
F

lo
pp

y
D

O
S

E
x)

 B
A

S
IC

/C
 T

E
S

T

E
x)

 L
IN

K
 T

E
S

T
,

R
E

L
O

 .
 L

IB

E
x)

 R
U

N
 T

E
S

T

M
on

it
or

M

on
it

or

C
om

m
an

d
se

gm
en

t
(B

A
S

IC
 c

om
pi

le
r)

C
om

m
an

d
se

gm
en

t
(L

in
ke

r)

S
ym

bo
l

ta
bl

e

M
on

it
or

F
lo

pp
y

D
O

S
F

lo
pp

y
D

O
S

U
nu

se
d

U
nu

se
d

F
lo

pp
y

D
O

S

S
tr

in
g

se
gm

en
t

n
o

p
en

 f
ile

 s
eg

m
en

ts

(I
) -< !! CO

0
T

ex
t

ed
it

or

0°

T
E

S
T

.A
S

C

B
A

SI
C

 c
om

pi
le

r

0 0°
A

ss
em

bl
er

M
on

it
or

M
on

it
or

F
lo

pp
y

D
O

S
F

lo
pp

y
D

O
S

C
om

m
an

d
se

gm
en

t
(T

ex
t

ed
it

or
)

C
om

m
an

d
se

gm
en

t
(Z

80
 a

ss
em

bl
er

)

S
ou

rc
e

m
e

se
gm

en
t

fI
nc

lu
de

d
in

 t
he

 t
ex

t
ed

it
or

 a
s

re
se

rv
ed

S

ou
rc

e
fi

le
 s

eg
m

e
nt

ar

ea
.

W
ri

te
 m

e
se

gm
en

t
(T

E
S

T
.A

SC
)

R
B

 m
e

se
g

m
en

t
(T

E
S

T
.R

B
)

E
d

it
 b

uf
fe

r
~

S
ym

bo
l

ta
bl

e

S
ta

ck
 a

re
a

R
es

er
ve

d
1

E
x)

 E
D

IT

E
x)

 A
SM

 T
E

S
T

.
$C

R
T

/E
.

$L
P

T
/L

T
E

S
T

. R
B

 0 0°

I
T

E
S

T
.R

B
L

in
ke

r
E

xe
cu

ti
on

0
T

E
S

T
.
0°

L

in
ke

r
E

xe
cu

ti
on

O
B

J

M
on

it
or

F
lo

pp
y

D
O

S

C
om

m
an

d
se

gm
en

t
(L

in
ke

r)

S
eg

m
en

t
1

to
 b

e
li

nk
ed

(T

E
S

T
.R

B
)

S

eg
m

en
t

2
to

 b
e

li
nk

ed

~

(S
U

B
l.

R
B

)

O
B

J
fil

e
se

gm
en

t
(T

E
S

T
.O

B
l)

L
in

ki
ng

 a
re

a

S
ym

bo
l

ta
bl

e

M
on

it
or

F
lo

pp
y

D
O

S

O
bj

ec
t

se
gm

en
t

w
hi

ch

ha
s

be
en

 a
ss

em
 b

le
d

an
d

li
nk

ed

n
op

en
 m

e
se

gm
en

ts

U
nu

se
d

I

E
x)

 L
IN

K
 T

E
S

T
,

SU
B

 1

E
x)

 R
U

N
 T

E
S

T

)
)

00
$CMT

ASM

Assembler

4. DOS COMMAND USAGE

4.1 Program Development Under Floppy DOS

Source file Text editor
Source file

Q EDITXFER Source creation
14---------i~

and editing
o

$ FDI "-' $ FD4

1
BASIC compiler

$PTR, $PTP, etc.
Assembly Compilation

$CRT, $LPT, etc. $CRT, $LPT, etc.

Relocatable files Library file

~
LIBRARY Q

0

LINK DEBUG

System file Linker Symbolic debugger

Q Debugging.

0

~

Linking

Object file
Object file BNPF,HEXADECIMAL, BINARY formats

00 I XFER 0 PROM.. •.. ..
0°

RUN

t:J
$CMT

$PTR, $PTP, etc.

(Execution

Fig. 4-1

SYS-19

4.2 Floppy DOS Control Keys

4.2. 1 Main keyboard

Except for the following, the control keys on the main keyboard are used in the same manner as under

the SB-1510.

I SHIFT I The scrolling speed of the display data is maintained at the preset speed while this key is
held down. When this key is released, the scrolling speed returns to the maximum speed.
The scrolling speed is set with

POKE $OOOF nn
nn =01 '" FF The speed slows down as the value of nn is increased.
nn =40 Normal speed

I SHIFTI + [QJ Deletes the portion of the line from the cursor position to the end of the line.

ISHIFT I +DJ Sets a tab at the cursor position.

ISHIFT I + [1J Resets the tab at the cursor position.

I SHIFTI + rn Resets all tabs set by the above procedure.

I SHIFT I + [I] Sets the number of characters per line to 40.
The screen is cleared and the cursor is returned to the home position.

I SHIFTI + [I] Reverses the shift mode of the alphabetic keys.
Making these entries again resets the reversed shift mode.

ISHIFTI + W Sets the number of characters per line to 80. The screen is cleared and the cursor is re
turned to the home position.

ISHIFTI + I INST I Enables insertion of an arbitrary number of characters at the cursor position. Pressing
the IeR I key terminates insertion.

I BREAK I Terminates the program currently being executed, displays the message" Break" and
awaits entry of a new DOS command. Executing ON BREAK GOTO under the BASIC
compiler causes a jump when the IBREAK I key is pressed.

I SPACE I Holding down the space key for a certain period of time suspends current program execu
tion. The time differs according to the operation currently being executed. For example,
when the printer is operating, the space key must be held down until a carriage return is
performed. After program execution has been suspended, one of the following operations
is possible.

• Pressing the IBREAK I key : See the explanation above.
• Pressing the ISPACEI key: Resumes program execution.

The ~ through []] keys are on the numeric pad.

SYS-20

4.2.2 Automatic repeat function

All keys other than the cassette tape control keys are provided with the automatic repeat function:

when a key is held down for more than a preset period of time, the key entry is automatically repeated

at a preset speed. The period and speed are stored in memory location OOOD and can be set with the

following BASIC statement.

POKE $OOOD sstt

ss = 01 ,....., FF : The repetition speed is reduced as the value of ss increases.

tt = 01 ,....., FF : The period described above is determined by (ss) *(tt), so it becomes greater as

the value of tt is increased.

Example:

POKE $OOOD 2010

4.2.3 Cursor control keys

Key entry _ .A: Picture character Code Function
c

GRPH + rn
GRPH + [f]

GRPH + B
GRPH + G
GRPH + ~
GRPH + §]

SHIFT + ~

[!]

[!]

~

[B

[8]

[9

III

OIH

02H

03H

04H

OSH

06H

IFH

Moves the cursor down 1 line.

Moves the cursor up 1 line.

Moves the cursor to the right by 1 space.

Moves the cursor to the left by 1 space.

Moves the cursor to the home position.

Clears the screen and moves the cursor to the home position.

Delimiter

4.2.4 Initial settings

Various initial values are set when Floppy DOS is activated by MZ-80B system IPL. These values are the

initial default values, and they can be updated by the programmer.

• Definable function keys

[ffi RUN [£ill L......J$ F D 1

I F21 X F E RL......J WIJ L......J$ F D 2

[fl] DELETE [ill] L......J$ K B L......J

I F41 RE NAMEL......J [£ill L......J$ C R T

cm DI R [ill] L-J$ L P T/L

ern
ern
I F61 E D I T L......J [ill] L-J$ C M T ;

A S M [ill] A S CL-]

L INK [ill] RB L......J

I F91 D E BUG [£ill L I BL-J

[TIQJ B A SIC I F20 I o B J L-]

.~

For [ill -I F20 I , press [El] - IF I 01 and ISHIFT Isimultaneously.

SYS-21

• Scrolling speed: nn=80

• 	 Automatic repeat speed and preset period:

(ss) * (tt) =40 * OC

• Tab spacing: 5 characters

• Small letter input mode: Shift position in the normal mode or ISHIFT I+w
• Other initial values are the same as those set by BASIC SB-551 O.

4.2.5 Differences between the S8-1511 and S8-1510
. ", ' ,~'

Item
.., ," ,,~ .. ' ''''1:.

. ~:-

SB-lSlO
',.' ~ .' ~

."~J. cc

SB-lSll (monitor) l~

Automatic repeat function

• Cursor control keys only

• Key entry is repeated only when a
cursor control key and the I SHIFT I
key are pressed simultaneously.

• All keys other than the cassette tape
con trol keys

• The repetition speed and the time re
quired for starting repetition are
variable. See page 22.

Defmable function keys
• Up to 10 functions can be assigned.

[ill rv I FIO I
• Up to 20 functions can be assigned.

[TI] rv IFIOI and
I SHIFT I + [HJ rv IFIO I

Interrupt

When interruptions are disabled upon
entry to a subroutine, they are enabled
before the RET instruction is executed.

When interruptions are disabled upon
entry to a subroutine, they are enabled
or kept disabled according to the condi
tion set just before control was trans
ferred to the subroutine.

.
RST

RST7 (PANIC) displays the contents of
registers AF, BC, DE, HL and PC and
awaits entry of a new monitor command.

• RST7 (PANIC) displays the contents
of registers AF, BC, DE, HL, PC and
SP and awaits entry of a new monitor
command.

• RST6 is reserved for use by the
debugger.

SVS-22

4.3 DOS Command Coding Rules_
This section describes the coding rules for DOS commands.

4.3.1 Command line format

In the command mode, Floppy DOS prompts for command entry with a number and the symbol 11 >11.
Enter a command followed by arguments (described later), if necessary, press I eR I key and the Floppy

DOS will execute the command.

Example I: 1. > mu:L-J~ [fB] 	 L-J denotes a space.

[~t - Argument
I L-_---------Command

Prompt
Default drive number (described later)

The first number (1 '" 4) indicates the default drive, namely, the currently logged-on disk drive.

,~ Some commands may require two or more arguments.

Example 2: 2> XFER L-J TEST, $ CMTI CR I
r ~ Argument 2
T_ ------Argument 1

'------------Command

The command and arguments must be separated by a comma and/or spaces.

(Legal) 2 >L-J XFERL-JL-JTESTL-J$ CMT ICR I

(Legal) 2 > XFER , TEST, $ CMT ICR I

(Illegal) 2 > XF ER TEST, ,$ CMT ICRI
T L Only one comma is allowed.

L__________ No space is allowed.

Two or more commands may be specified on one logical line by separating them with colons (" : ").

A line containing two or more commands is called a multistatement 1ine. A logical line may contain any

number of commands but it must not exceed 159 characters in length.

Example 3: 	 2> DELETE TEST: RENAME AAA, TEST: ASM TEST I CR I
Example 4: 	 2 > X fer $ kb, aBc

Either upper or lower case letters may be used for commands and arguments. The Floppy DOS
does not distinguish between upper and lower case letters.

4.3.2 File name

All program and data fIles on a disk are given file names. The programmer must specify a fIle name

when storing a program or data file on a disk and when reading it. A file name must be from 1 to 16

alphanumeric characters (including lower case letters) and/or special characters !, #, %, &, " (,), +, -, <,
=, >, @, [,""-. and].

No two files on a disk can have the same file name and file mode (described later). Files with the same

file name may exist on a disk if their file modes are different from one another.

(Files with the same file name and mode may exist on different disks).

SYS·23

4.3.3 File modes

The fIle mode identifIes the kind of the fIle. It is usually used with a file name. The MZ-80B file modes

are listed below.

File mode

. File mode Meaning ... - t,.'J
L. fP~~·1'} • -.I !

. OBJ Identifies an object file which contains Z80 machine code .

.ASC
Identifies a source fIle, such as one created by the text editor, which contains a stream of
ASCII characters.

.RB
Identifies a relocatable file which contains pseudo-machine language code (relocatable binary
code) generated by the assembler or compiler.

. LIB Identifies a library fIle consisting of two or more relocatable fIles .

.SYS
Identifies a me containing a system program which runs under Floppy DOS, such as the text
editor and assembler.

4.3.4 File attributes

File attributes are information pertaining to file protection. There are four file attributes: 0, R, Wand

P. File attribute 0 indicates that a file is not protected. The other file attributes inhibit the use of specific

commands as listed below.

Inhibited DOS

TYPE TYPE
XFER XFER
EDIT EDIT
ASM ASM
LINK LINK
DEBUG DEBUG
FROM FROM
BASIC BASIC

DELETE DELETE
RENAME RENAME

~

ROPEN # REPEN #
Inhibited BASIC

INPUT #() INPUT #()
Commands PRINT #() PRINT #()

4.3.5 File types

A file type indicates the file access method. There are two file types: sequential (S) and random (X).

Floppy DOS normally handles only sequential flies. Random files can be accessed only by the DELETE,

RENAME and CHATR commands. An optional BASIC compiler is required to create, write to and read

from random files.

SVS-24

4.3.6 Wildcard characters

The programmer can specify two or more files at a time by specifying wildcard characters in the file

name and file mode. The wildcard characters ? 11 and * 11 are used for file names and .* 11 is used for 11 11 	 11

file modes.

I Wild card character 11 ? 11 I

11 ? 11 represents anyone character. For example, assume that files ABC.ASC, ABC3.ASC, ABCD.RB,

XYZ.ASC and ADCN.ASC exist on the currently logged-on disk. When the command.

TYPE A ? C ? . ASC

is entered, the contents of the files ABC3 . ASC and ADCN . ASC will be displayed.

I Wildcard character 11 * 11 I

11 * 	11 Represents 0 or more characters.

A*: Represents file names beginning with 11 All e.g., A, A2, ABC

*2: Represents file names ending with 11 2 11 e.g., TEST2, SAMPLE2

P*S: Represents file names beginning with IIp
lI and ending with 11 S 11 e.g., PROGRAMS, PMS

I Wildcard characters 11.*' 1 I
11.*11 represents all file modes.

I Examples: I

DELETE PROG 1. * Deletes all fIles whose file name is PROG 1

XFER * .ASC,$ PTP Punches all fIles whose me mode is .ASe.

DIR A *B* ? 3 .RB

DELETE *. * Deletes all fIles on the disk.

4.3.7 Drive number and volume number

A drive number refers to the drive number of a floppy disk drive (MZ-80FB or MZ-80FBK). Drive

numbers 1 through 4 are assigned device names $FD1 through $FD4 respectively.

A volume number (1-127) is a number identifying a disk. Floppy DOS checks this number for validity

each time it accesses a file.

4.3.8 Basic device name

FDOS can handle the following I/O devices:

$KB : MZ-80B system keyboard

$CRT : MZ-80B system display unit

$FDI:

$FD2 :

Floppy disk drives (MZ-80FB or MZ-80FBK)

$FD3 :

$FD4 :

$CMT: System cassette unit

$LPT: System printer (MZ-80P4 or MZ-80PS)

$MEM: A part of main memory regarded as an I/O resource.

The system automatically reserves an unused area as $MEM. This area is released by the

DELETE $MEM command or when an error occurs.

SYS-25

4.3.9 Auxiliary device name

Auxiliary devices are devices whose control programs are not resident in the Floppy DOS are in memory.

Their control programs are stored in external files. An auxiliary device name is assigned to an auxiliary

device control program using the ASSIGN command to allow 10CS to manage the control program.

Paper tape reader and punch. The user must prepare an interface circuit for these using a
$PTR: I

universal interface card. The system contains their control programs, however. For details,
$PTP:

refer to 11 PAPER TAPE PUNCH AND READER INTERFACE" in the Appendix.

$SIA: Serial input port A

$SIB:

$SOA:

Serial input port B

Serial output port A
The interface card for these I/O ports is optional.

$SOB: Serial output port B

$CMTI Cassette tape deck for the MZ-80K

$USRI :

$USR2: These device names are provided for user-supplied I/O devices. The control program

$USR3: must be supplied by the user.

$USR4:

To use these device names, prepare a machine language area using the LIMIT command, load the

corresponding auxiliary device control program into the area using a LOAD command and link the

program with the I/O controller of Floppy DOS using an ASSIGN command. The auxiliary device

control programs are supplied in the form of object files and ASCII files. In general, use the object files.

If you want to change the loading address, assemble and link the ASCII files with DOSEQU.LIB from

the master disk.

The loading address of each auxiliary device control program is shown below.

F300 $CMTI

$SIA
$SIB
$SOA
$SOB
RPTR
$PTP

Floppy DOS work area
Interrupt vector area

}4
F700
F7DA
F8B4
F98E
FCOO
FC39
FEOO
FFOO

____------~-C-M-T-I-.A-S-C-,C-M-T-I-.O-B-J~

}
SIO.ASC, SIO.OBJ

}
PTRP.ASC, PTRP.OBJ

1. Memory map 2. Control programs
Example 5: I > LIMIT $F300

I > LOAD CMTI SIO PT RP

I > ASSIGN $CMTI $F300 $SIA $F700 $SIB $F7DA $SOA $F8B4 $SOB

$F98E $PTR $FCOO $PTP $FC39

Example 6: EXEC $FDI ; LOADAUX

All the auxiliary device control programs are loaded since file LOADAUX.ASC contains

the above commands.
Notes:

I. Any file 	input from the keyboard ($KB) is terminated by pressing the I BREAK I key. For example, exe

cution of the command

1 > XFER $KB, XYZ

is terminated when the programmer presses the I BREAK I key.

SVS-26

2. The end of files from $PTR is identified by the null code (DOH) following the data area (null codes in

the feed area are ignored).

3. $CMT and $MEM can be accessed only by the built-in commands and programs compiled by the BASIC

compiler. When they are used by other programs, the error message

no usable device

is issued.

4. 	$CMT can handle only .ASC and .OB] mode files. $KB, $CRT, $LPT, $PTR, $PTP and $MEM can

handle only .ASC mode files (error message "il file mode" is issued if an illegal file mode file is used

with one of these devices).

5. 	$PTP and $PTR automatically skip the tape feed portions.

4.3.10 Switches

Switches follow command names or arguments and specify optional command functions. There are

three types of switches.

I Global switches I

Global switches are appended to command names and specify the mode in which the command is to be

executed. Two or more switches may be specified for a command as shown in Example 8. In such cases

they may be placed in any order.

Example 7: 1> DATE/P IP denotes LPT.
T ~Global switch

'----Command

Example 8: 1 >-LINK/PIT TEST /P denotes LPT.

LGIObal switch IT denotes the symbol table.

Invalid: 1 > LINKL..J/PL..JI L..J T L..J TEST
~I\~

No space may appear in these positions.

I Local switchei]

Local switches are appended to arguments and specify the use of the arguments.

Example 9: 1 > ASM TEST, $ LPT IL, XYZ/O IL specifies the device on which the assembly listing is

to be output.

10 specifies the relocatable output fIle.

I Device switches I
Device switches are appended to device names. Their format is identical to that of local switches. The

legal device switches are / PE, / PO, / PN and / LF. These switches can be appended only to devices

$PTR, $PTP, $USRl, 4.

The meanings of the device switches are listed below.

Switch
" -

Input, Output

/PE
, IPO

/PN
ILF

Specifies that data is to be checked for even parity.
Specifies that data is to be checked for odd parity.
Specifies that bit 7 (MSB) of input data is to be set to O.
Invalid

Specifies that even partiy is to be used. (Note)

Specifies that odd parity is to be used. (Note)
(Note)
Specifies that leR 1is to be followed by 1LF I.

Note: An error is generated (ll data) if the MSB of the data is set to 1 from the beginning (e.g., graphic characters).

SVS-27

Note:

Any switch following the first argument of the RUN command is treated as a global switch.

Example 10: 1 > RUNL-JASM48/PL-JTEST, XYZ/O

f ~Loca1 switch
'---------Global switch

The meanings of the individual global switches are described in the related command descriptions.

4.3.11 Default assumptions

The general format of a file specification (valid for $FD 1-$FD4 and $CMT) is given below.

Example 11: D2 ; PROG2 . ASC $ CMT ; TEST2 . OB]
tVV' ~~emode T T ~F~emode

'------File name - File name T'--------Device name Device name

The programmer can omit portions of the complete file specification as explained below.

I Default drive I
The device name may be omitted as exemplified below.

Example 12: 2> LINK TESTl, $FD3 ; TEST2, TEST3

In the above example, the system assumes the name of the currently logged-on disk drive (identified by

"2>") before TESTI and TEST3. Consequently, the above command line is equivalent to the following:

2> LINK $FD2; TESTl, $FD3; TEST2, $FD2; TEST3

The default drive can be changed by:

1. Executing the DIR command or

2. Moving the cursor to the left of the prompt ">" and changing the drive number (e.g., changing

"2>" to "I>").

I Default file name I

The file name may be omitted when reading files from the cassette tape unit ($CMT). When a file name

is omitted in the XFER command or other similar command (See example 10), the system assumes an

appropriate file name.

Example 13 : XFER $ FDl ; ABC . ASC, $ FD2

'L The system assumes $FD2; ABC. ASC.

Default HIe mode I
When the file mode is omitted, the system makes an appropriate default assumption according to the

command. See the individual command descriptions.

Notes:

1. Both device name and file name cannot be omitted simultaneously.

2. No file name can be assigned to devices other than $FD 1 through $FD4 and $CMT.

SYS-28

4.3.12 Arguments

There are several argument formats.

1. Device name + File name + File mode

Examples: $ FD1 ; ABC . ASC $ CMT ; XYZ . OB] $ FD2; * . *

2. Device name + File name. The file mode is omitted.

Examples: $ FD1 ;ABC $ FD2; A* $ CMT; TEST

3. File name + File mode. The device name is omitted (default drive).

Examples: TEST3 . RB * . ASC PROG?RB

4. Device name

a. 	When the file name and mode are omitted or when the device name proper is to be specified.

Examples: $ FD1 $ CMT

b. When neither file name nor mode can be specified.

Examples: $ PTR $ CRr $ LPT

5. Hexadecimal constant

Examples: $ 1200 $ COOO

6. Special arguments

T
Examples: TIME 9 : 30 : 00

~ AIgument

'--------Command

LIMIT MAX
T ~'----AIgument
- Command

SYS-29

4.4 Using DOS Commands
4.4.1 ASM 	 Transient

I Format I
ASM filename

I Function I

The ASM command assembles the source program in the source file specified by the argument,. out

puts the result to a relocatable file and outputs an assembly listing to the specified file or device.

I Default HIe mode I

.RB when local switch 10 is specified; otherwise, .ASC.

1 Switches I

Global switches:

None: A relocatable file is generated.

IN: No relocatable file is generated.

Local switches:

None: Specifies that the specified source file is to be assembled.

10: Specifies that the relocatable code is to be output to a file under the selected name.

lE: Specifies that only error statements are to be output to the selected file or device.

I L: Specifies that the assembly listing is to be output to the selected file or device.

I Wildcard characters I
Not allowed

I Examples I

(1) 	ASM TEST

Assembles source file TEST.ASC and generates relocatable file TEST.RB.

(2) 	ASM TEST, $ LPT /L, XYZ/O

Assembles source file TEST.ASC, generates relocatable file XYZ.RB and outputs the assembly

listing to LPT.

(3) 	ASM/N TEST, $CRT lE, $ SOA/L

Assembles source file TEST.ASC while displaying error statements (including external symbol

references) and outputting the assembly listing to SOA. No relocatable file is generated.

(4) ASM TEST, $ FD2 ; TEST! IL, $FD2; TEST! .RB/O

Assembles source file TEST.ASC and saves relocatable file TESTl.RB and assembly listing TEST!.

ASC on FD2.

(5) ASM TEST, $ LPT IL, $ 2000

Assembles source file TEST.ASC, generates relocatable file TEST.RB and outputs the assembly

listing to LPT with a bias of 2000H added.

SVS-30

http:TESTl.RB

4.4.2 ASSIGN 	 Transient

I Format I
ASSIGN devicenamel, $nnnn, , devicenameN, $nnnn

I Function I
The ASSIGN command assigns logical device names to user-supplied I/O control routines.

I Switches I

None.

I Wildcard characters I

Not allowed.

I Examples I
(I) LIMIT $FOOO

ASSIGN $USR1, $FOOO

Assigns device name $USRI to the user I/O control routine at address $FOOO.

(2) ASSIGN 	 $USR2, $F200, $USR3, $F400

Assigns $USR2 to the routine at address $F200 and $USR3 to the routine at address $F400.

(3) ASSIGN $PTP, $F600

. Assigns $PTP to the new PTP routine at address $F600 in place of the PTP control routine in

Floppy DOS.

I Programming notes I

(I) 	When a device name is assigned more than once, the last assignment is taken.

(2) To cancel an assignment, set the address operand to $FFFF.

Example: ASSIGN $USRI, $FFFF This command cancels $USRl.

(3) When an I/O control routine is destroyed by execution of a new LIMIT or LOAD command it is

necessary to cancel the device assignment for that routine using the above procedure.

4.4.3 BASIC 	 Transient

I Format I

BASIC itlename

I Function I
The BASIC command compiles the source program written in BASIC language identified by the argu

ment and outputs the BASIC listing~

I Default HIe mode I
.RB when local switch /0 is specified; .ABC otherwise.

SYS-31

I Switches I

Global switches

IN: Specifies that no relocatable file is to be generated.

IC: Specifies that the BASIC listing is to be displayed on CRT.

IP: Specifies that the BASIC listing is to be printed on LPT.

(Note that switches/C and / P cannot be specified simultaneously.

Local switches

None: Specifies that the specified source file is to be compiled.

10: Specifies that the relocatable file is to be output to the selected file.

I Wild card characters I

Not allowed.

I Examples I
(I) BASIC TEST

Compiles source file TEST.ASC and generates relocatable file TEST.RB.

(2) 	BASIC/C TEST, XYZ/O

Compiles source file TEST.ASC, generates relocatable file XYZ.RB and displays the BASIC listing

onCRT.

(3) 	BASIC/N/P TEST

Compiles source file TEST.ASC and prints the BASIC listing on LPT. No relocatable file is gene

rated.

I Programming notes I

(I) The compiler terminates generation of the relocatable file when it detects an error during compila

tion.

(2) The BASIC compiler is available as an option.

4.4.4 BOOT 	 Built-in

I Format I
BOOT

I Function I
Tenninates execution of Floppy DOS and activates the MZ-80B system IPL (Initial Program Loader).

I Programming notes I

The system program is loaded into memory when IPL is activated. Therefore, fonner memory con

tents (such as Floppy DOS, monitor and user programs) are cleared.

4.4.5 CHATR 	 Built-in

I Format I

CHATR sign, ftlenamel, attribute1 , , filenameN, attributeN

I Function I
The CHATR command changes the attributes of a specified file.

SVS-32

I Default file,mode

.ASC

I Switches I

None.

I Wildcard characters I

Not allowed

I File attributes I

0: None.

R: Read-protected file

W: Write-protected file

P: Permanent file

I Examples I

(1) 	CHATR KEY, TEST, R

Assigns the password "KEY" to file TEST.ASC and declares the file as a read-protected file.

(2) CHATR SECRET, TEST.OBJ, 0

Deletes the file attributes of file TEST.OBJ. The specified password, "SECRET", is matches with

the password specified for the file before the command is actually executed.

(3) 	CHATR

Allows the programmer to interactively specify the sign, file name and attribute in that order.

(4) 	CHATR sign

Allows the programmer to interactively specify the file name and attribute in that order.

I Programming note I

The interrelationship of the file attributes is shown below.

...... Set sign.

Check sign.

Does not check sign. 4.4.6 CONSOLE Built-in

I Format I
CONSOLE Sscrolling-start-line, endline, Ccharacter-number, R, N

IFunction I

Sets the scrolling area on the CRT screen, sets the number of characters per line to 40 or 80 and/or

reverses the picture.

I Default fIle mode I

------ None.

I Switches I

None.

SVS-33

I Wildcard characters I

None.

I Examples: I

(1) 	CONSOLE S2, 10

Sets the scrolling area to the area from the 2nd line through the 10th line.

(2) CONSOLE R, C80

Reverses the characters and graphic display on the screen and sets the number of characters per

line to 80.

I Programming notes I

The arguments of the CONSOLE commands can be written in any order. The modes set are effective

until they are set again.

4.4.7 CONVERT 	 Transient

I Format I
CONVERT

I Function I
Converts a file generated with the SB-SOOO series BASIC interpreter or the D-BASIC SB-6000 series

into a file usable under Floppy DOS, or converts a file generated with Floppy DOS into a file usable

under the SB-SOOO series or SB-6000 series. The relationship between file modes handled by this

command is as follows.

BASIC FDOS

BTX ASC

BSD ASC

OBJ 	 OBJ

I Default rde mode I

None.

I Switches I
None.

I Wildcard characters I

Not allowed.

I Example I
2 > CONVERT

Choose one from:

1 : BTX -+ ASC

2: BTX ~ ASC

3 : BSD ~ -+ ASC

4 : OBJ ~ -+ OB]

(1 '"'"' 4)? .

Source drive No. (1 '"'"' 4, CMT =0) ?2 Enter I '"'"' 4 for the $FD and 0 for the $CMT.

Source file name ? SAMPLE

Destination drive No. (I '"'"' 4, CMT = 0) ?3

SYS-34

Destination file name? SAMPLE

End of convert

1 Programming notes I

(1) Never intermix D-BASIC 	format disks and Floppy DOS format disks. Otherwise, disk contents

may be destroyed.

(2) Since 	the syntax of D-BASIC and that of the BASIC compiler differ slightly, there are some

cases in which programs converted with the CONVERT command cannot be compiled by the

BASIC compiler without some modification. Use the text editor to modify such programs before

compiling them with the BASIC compiler.

(3) A BRD file cannot be converted. First convert it into a BSD file, then execute the CONVERT

command.

Refer page 65 for further information.

4.4.8 COpy Transient

IFormat I
COPY

I Function I

The COpy command copies the contents of the source disk to the destination disk. The programmer

can specify only predetermined types of disks as the destination and source disks as summarized in

the table below.

Source Destination Allowed/disallowed Remarks t c<;i2'

(Any diskette)
Master
Master
Submaster
Submaster
Slave
Slave

Master
Submaster
Slave
Submaster
Slave
Submaster
Slave

Disallowed
Allowed
Allowed
Disallowed
Disallowed
Allowed
Allowed

The destination disk becomes a submaster disk.

The destination disk becomes a slave disk.

It is desirable to create a submaster disk from the master disk using the COPY command and to use

this submaster disk during normal operation. It is also desirable to make copies at appropriate times

when the original disk is updated to prevent errors due to physical defects in the disk or software

errors or inadvertent use of the DELETE command.

Default file mode I

None.

Switches I

None.

Wildcard characters I

None.

I Examples I

(l) Floppy DOS always copies from $FD I to $FD2 when the system has two or more floppy disk units.

2"> COpy

Destination disk's sign ?BACKUP +- Proceeds to the next step if the passwords match.

Insert source into $FDl +- Insert the source disk in drive FDl.

Destination into $FD2, ..0. space key +- Insert the destination disk in drive FD2, then press the I S p I key.

2> Copying is completed.

SYS-35

4.4.9 DATE 	 Built-in
.~

I Format I

DATE mm.dd.yy

I Function I
The DATE command sets or displays the system calender date in the month. date. year format.

This information is assigned to each file when it is saved on a disk. The date is not automatically

updated, however.

I Default file mode I

None.

I Switches I
Global switch/P: Specifies that the date is to be printed on LPT.

I Wildcard characterS]

Not allowed.

I Examples I
(1) 	DATE 11.20.81

Sets the system calender date to November 20th, 1981

(2) 	DATE

Displays the current date on CRT.

(3) 	DATE/P

Prints the current date on LPT.

SY8-36

http:11.20.81
http:mm.dd.yy

4.4.10 DEBUG 	 Transient

I Format I

DEBUG fuename 1, , fuenameN

I Function I
The DEBUG command links and loads relocatable fIles specified by the arguments to form an object

program in memorY for debugging.

I Default fue model

.OBJ when local switch/O is specified; .RB otherwise.

I Switches I

Global switches

None: Specifies that only the link information is to be displayed on CRT.

/T: Specifies that the symbol table information is to be output (on CRT unless global switch

/ P is specified).

Specifies that the link and symbol table information is to be printed on LPT when global

switch / T is specified.

Local switch

10: Specifies that the object file is to be created under the selected fIle name.

! Wildcard characters I

Not allowed.

I Examples I
(1) 	DEBUG TEST 1 , TEST2

Links and loads relocatable files TESTI.RB and TEST2.RB and waits for a debugger command.

The link information is displayed on CRT.

(2) DEBUG/.T/P TEST, TEST 10

Loads relocatable file TEST.RB, prints the link and symbol table information on LPT and gene

rates object file TEST.OBJ.

(3) DEBUG 	TESTl, $1000, TEST2, TBL $20

Links and loads relocatable files TESTI.RB and TEST2.RB and reserves $1000 bytes of free area

in memory between them. The symbol table size is set to $2000 (approximately 8K bytes).

When the table size is not specified, the debugger automatically allocates 6K bytes for it.

(4) DEBUG

Invokes the symbolic debugger and enters the command mode.

SVS·37

http:TEST2.RB
http:TESTI.RB
http:TEST2.RB
http:TESTI.RB

4.4. 11 DELETE Built-in

I Format I
DELETE filenamel, , filenameN

I Function I

The DELETE command deletes the files specified by the arguments except those with the W or P file

(1) DELETE TEST. *

attribute.

I Default file mode I
.ASC

I Switches I

Global switches IC: When this switch is specified, the system displays each file on CRT for confir

mation. The file is deleted when the programmer presses the [Y] key and

skipped when he presses the [NJ key.

IN: Specifies that no deleted file is to be displayed. (The programmer must not

specify / N and I C simultaneously.)

I Wild card characters I

Allowed.

I Examples I

Deletes all files whose file name is TEST.

(2) DELETE/C * .OBJ

Displays all files with a file mode of .OBJ on CRT for confirmation before deleting them.

(3) DELETE $FD2; * . *
Deletes all files on FD2 except those with the file attribute P or W. To delete file-protected file,

it is necessary to cancel the file protect attributes with the CHATR command.

(4) DELETE $ MEM

Deletes file $ MEM.

4.4.12 DIR Built-in

I Format I

DIR devicename (filename)

I Function I
Displays the contents of the directory specified by devicename of filename. "devicename" must refer

to a floppy disk unit.

I Default file mode I

.*

I Switches I

Global switch IP: Specifies that the directory is to be printed on LPT.

SYS-38

I Wildcard characters I

Allowed.

I Examples I
(1) 	DIR $FD2

Displays the file infonnation of all files on the disk in FD2 on CRT . FD2 is designated as the

default drive.

(2) 	DIR/P

Prints the file infonnation of all files on the disk in the current default drive on LPT. The

directory device remains unchanged.

(3) 	DIR TEST

Displays on CRT the file infonnation of all files on the disk in the current default drive whose

file name is TEST.

(4) DIR $FD2; * . ASC

Displays the file infonnation of all source files on the disk in FD2 on CRT. FD2 is designated

as the default drive.

I Programming notes I

sect AT fliename

2> 10 RS TEST. ASC

1T ~ T 0' ~~: ;~SeqUentiMflle)
IL .___________ File attribute
- Number of sec

L---_____________ Drive number

(read protected)
tors used

mm.dd.yy

110.25.80

~ creation
U?????? appear

(October 25th, 1980)
s if unknown)

4.4.13 EDIT Transient

I Format I

ED IT filename

I Function I

The EDIT command invokes the text editor to create a new source file or edit an existing source file.

I Default fIle mode I

.ASC

I Switches I

None.

I Wild card characters I

Not allowed.

I Examples I

(1) 	EDIT

Invokes the text editor and enters the command mode.

(2) EDIT TEST

Invokes the text editor, reads source file TEST. ASC and enters the command mode.

(3) EDIT 	$FD2; TEST

Invokes the text editor, reads source file TEST. ASC from the $FD2 and enters the command

mode.

SV8-39

4.4.14 EXEC Built-in

I Format I

EXEC fIlename

I Function I

The EXEC command executes the contents of the file specified by the argument as Floppy DOS

commands. A device name may be specified in place of filename. Files containing Floppy DOS com

mand are called EXEC files.

I Default fIle mode I

.ASC

I Switches I

None.

I Wildcard characters I

Not allowed.

I Examples I

(1) EXEC MACRO

Executes the contents of source file MACRO.ASC assuming that the file consists of DOS com

mands. When the file MACRO.ASC contains the command lines shown below, the system executes

the commands in sequence from the top to the bottom.

ASM $FD2 ; TEST

LINK IT IP $FD2 ; TEST

CHATR KEY, $FD2 ; TEST .OB], W

RUN $FD2 ; TEST

3 > FREE

DIR/P $FD2

(2) EXEC MYDEVICE

Sequentially executes the command lines contained in source file MYDEVICE.

LIMIT $FOOO ~ limit the Floppy DOS area to $FOOO.

LOAD MYPRINTER ~ Set the loading and execution addresses to $FOOO.

LOAD MYLIGHTPEN ~ Set the loading and execution addresses to $F800.

ASSIGN $USRl, $FOOO, $USR2, $F800 ~ Assign user I/O names to user programs.

(3) EXEC 	ABC

Executes the routine in file DEF repeatedly if file ABC.ASC contains the following routine.

RUN DEF

EXEC ABC

SYS40

I Programming notes I

(1) Since the EXEC command executes the commands specified in a file as macro commands, it

cannot be specified on a multistatement line as shown below.

EXEC MACRO : TYPE MACRO

(2) The specified file may have 	the file attribute R, W or P. However, execution of files with the

attribute R or P is not displayed.

(3) When an error occurs during execution 	of an EXEC file, the system immediately terminates pro

cessing and waits for entry of a new Floppy DOS command from the keyboard.

(4) When 	the file name START-UP is assigned to an EXEC file, that file will be automatically exe

cuted when Floppy DOS is activated.

4.4.15 FAST 	 Built-in

I Format I

~ FAST

I Function I

Fast-forwards the cassette tape. Control is given to the next command as soon as the fast-forward

operation has been started.

4.4.16 FORMAT 	 Transient

I Format I

FORMAT $FDn

I Functipn I

The FORMAT command formats (initializes) a new diskette.

The user must always format new disks before using them.

I Default rIle mode I

None.

~

I Switches I

None.

I Wild card characters I

Not allowed.

I Examples I

(1) FORMAT 	$FD2

Floppy DOS disk formatting

Insert disk into $FD2, ,i). space key

New sign ? SHARP

Volume No. ? 50

END

Insert disk into $FD2, ,i). space key

Break +-Press the I BREAK IKey to return to FDOS.

SYS41

The above interaction shows an example of formatting a completely new disk.

"sign" prompts for a password to be given at the disk. When this disk is resubmitted for for

matting, the system checks for a password match before actually refonnatting the disk. "Volume

No." prompts for a volume number to be assigned to the disk. The programmer can specify any

number from 1 to 127. The volume number should be unique.

(2) 	FORMAT

Floppy DOS disk fonnatting

Insert disk into $FDl. .Q. space key

Old sign? SHARP ~ The system matches the password entered with thu.t stored on the disk and proceeds to

the next step if they match.

New sign? MZ-80 ~ Set a new password.

Volume No.? 127

END

Insert disk into $FDI) .0, space key

Break +- Press the I BREAK Ikey to return to Floppy DOS.

The above interaction shows an example of reformatting a previously formatted disk. The

meanings of "sign" and 11 Volume No. 11 are identical to those in example (I).

I Programming notes I

The following message will be displayed if a disk cannot be initialized because of defects, etc.

(1) 	bad track #nn

When this message is displayed, the XFER command can be executed for the disk but the COPY

command cannot.

(2) 	no usable disk

When this message is displayed, this disk is not usable.

4.4.17 FREE 	 Built-in

I Format I

FREE $FDn

I Function I

The FREE command displays the number of used sectors, the number of unused sectors, and/or the

volume number of the disk in the specified floppy disk unit.

I Default fIle mode I

None.

I Switches I

GlobaVP : Specifies that the disk usage infonnation is to be printed on LPT.

I Wildcard characters I

Not allowed.

SYS-42

I Examples I

(1) 	FREE $FD2

$ FD2 vol: 127 left: 1072 used: 48

(2) 	FREE/P

Prints the same infonnation as given in example (1) on LPT, except that the infonnation pertains

to the disk in the default drive.

I Programming note I

A disk is comprised of 1120 sectors (each consisting of 256 bytes). Of these 1120 sectors, ' however,

48 sectors are reselVed by the system as Floppy DOS areas. Consequently, used: 48 is indicated for new

disks.

4.4.18 HCOPY 	 Transient

I Format I

HCOPY display page

Copies one frame from the CRT screen on the LPT.

None.

None.

Not allowed.

I Function I

I Default IIIe mode I

I Switches I

I Wildcard characters I

I Examples: I

HCOPY 1 Copies character data from the CRT screen on the LPT.

HCOPY 2 Copies the display data in graphic area 1 on the LPT.

HCOPY 3 Copies the display data in graphic area 2 on the LPT.

HCOPY 4 Copies the display data onto the LPT when the contents of graphic areas 1 and 2 are

displayed simultaneously.

4.4.19 KEY 	 Built-in

I Format I

KEY keynumber = ..s..

Assigns a function to the definable function key indicated by a key number from 1 through 20. The

function is specified by writing a string or command name enclosed in double quotation marks.

None.

None.

I Function I

I Default file mode I

I Switches I

Global /P : Printed on LPT

I Wildcard character I

SYs-43

I Examples: I

KEY 1 ="XFER"

KEY 7 ,= "DELETE"

KEY 13 ="$KB"

KLIST

KEY 1 ="XFER"

KEY 7 ="DELETE"

KEY 13 ="$KB"

KEY 20 =" "

I Programming notes I

Definable function keys 11 through 20 are activated by pressing the I SHIFT I key and one of keys

[EI] through I F 1 0 I simultaneously.

4.4.20 KLIST Built-in

I Format I

KLIST

Lists the definition status of the definable function keys.

None.

None.

I Function I

I Default tile mode I

I Switches I

I Wildcard character I

None.

I Examples I

KLIST

KEY 1 = "RUN"

KEY 2 ="XFER"

KEY 3 ="DELETE"

KEY 4 ="RENAME"

KEY 5 ="DIR"

KEY 6 = "EDIT"

KEY 7 = "ASM"

KEY 8 ="LINK"

KEY 9 ="DEBUG"

KEY 10 = "BASIC"

KEY 11 = "$FDl;"

SYS44

I

4.4.21 LIBRARY Transient

I Format I

LIBRARY filename 1, , filenameN

I FunctlOO]

The LIBRARY command reads the relocatable files specified by the arguments to form a library file.

I Default file mode I

.LIB when local switch /0 is specified; .RB otherwise.

I Switches I

Global switches

None: Link information pertaining to the relocatable files is displayed on CRT.

/P: Specifies that the link information is to be printed on LPT.

Local switches

None: The first filename specified is used as the name of the library file.

/0: Specifies that the library file is to be created with the selected file name.

I Wild card characters I

Not allowed.

I Examples I

(I) 	LIBRARY TEST 1, TEST2

Reads relocatable files TEST I.RB and TEST2.RB to generate library file TEST 1. LIB. The link

information is displayed on CRT.

(2) LIBRARY /P TESTl.LIB, TEST2, XYZ /0

Reads relocatable files TEST1.LIB and TEST2.RB and generates a library file named XYZ.LIB.

The link information is printed on LPT.

4.4.22 LIMIT Transient

I Format I
LIMIT $nnnn

I Function I

The LIMIT command sets the Floppy DOS area boundary at address $nnnn.

Default file mode I

None.

I Switches I

None.

I Wildcard characters I

None.

SYS-45

http:TEST2.RB
http:TEST2.RB

I Examples I

(I) 	LIMIT $FOOO

Limits the Floppy DOS area to $FOOO and frees the higher area.

(2) LIMIT MAX

Sets the Floppy DOS area to the maximum available address.

I Programming note I

The LIMIT command cannot be specified in a multistatement as shown below.

Illegal: LIMIT $EOOO : DIR $FD2

4.4.23 LINK 	 Transient

I Format I

LINK filename l, , filenameN

I Function I

The LINK command links the relocatable files specified by the arguments to generate an object or

system file.

I Default HIe mode I

.OBJ when local switch /0 is specified; .RB otherwise.

I Switches I

Global switches

None: Only the link information is displayed on CRT.

/T: Specifies that the symbol table is to be output (on CRT unless global switch / P is

specified).

/P: Specifies that the link and symbol table information is to be output to LPT (when global

switch /T is specified).

/S: Specifies that a system file is to be generated.

Local switches

None: The first filename specified is used as the name of the object file.

10: 	 Specifies that the object file is to be created under the specified file name. If global

switch IS is specified, specifies that the system file is to be created under the specified

file name.

I ·Wildcard characters I

Not allowed.

I Examples I

(I) 	LINK TEST l, TEST2

Links relocatable files TESTl.RB and TEST2.RB and generates an object flie named TESTl.

OBJ. The loading and execution addresses of the object file are automatically set to the beginning

address managed by Floppy DOS. The link information is displayed on CRT.

(2) 	LINKITIP TESTl, TEST2, XYZ/O

Links relocatable files TESTl.RB and TEST2.RB and generates object file XYZ.OBJ. The loading

and execution addresses of the object file are set to the beginning address managed by Floppy

DOS. The link and symbol table information is output to LPT.

SYS-46

http:TEST2.RB
http:TESTl.RB
http:TEST2.RB
http:TESTl.RB

(3) LINK 	$COOO, TEST, DOSEQU.LIB, EXEC$CI00

Links TEST.RB and DOSEQU.LIB and generates object file TEST.OBJ, specifying $COOO and the

loading address. The execution address of the object file is $C I 00.

(4) LINK TEST1, $1000, TEST2, TBL $20

Links fue TESTI.RB (specifying the beginning of the Floppy DOS area as the loading address),

then links and loads file TEST2.RB, reserving $1000 bytes of free area between the two fues. The

symbol table size is set to 8K ($2000) bytes.

4.4.24 LOAD Transient

I Format I

LOAD filename l, , filenameN

I Function I

The LOAD command loads the object files specified by the arguments in areas outside the area

managed by Floppy DOS.

I Default file mode I

.OBJ

I Switches I

None.

I Wildcard characters I

None.

I Example I
(1) LOAD TESTl, TEST2

Loads object files TESTl.OBJ and TEST2.0BJ into memory areas outside the area managed by

Floppy DOS. The programmer must create object fues so that they are to be loaded in appropriate

addresses.

4.4.25 MLlNK 	 Transient

I Format I
MLINK ftlename l, , ftlenameN

I Function I

The MLINK command links the relocatable files specified by the arguments to generate an object file.

I Default ftle mode I
.OBJ when local switch 10 is specified; .RB otherwise.

I Switches I

Global switches

None: Only the link information is displayed on the CRT.

IT: Specifies that the symbol table is to be output (on the CRT unless global switch IP is

specified).

IP: Specifies that the link and symbol table information is to be output to the LPT (when

global switch IT is specified).

Local switches

None: The first file name specified is used as the name of the object file.

10: Specifies that the object file is to be created under the selected file name.

SY8-47

http:TEST2.RB
http:TESTI.RB

I

I Wildcard characters I

Not allowed.

I Examples I
2> MLINK STARTREK

I Programming notes I

(1) The MLINK command can be used in the same manner as the LINK command except that it

cannot specify the table size (TBL$hh).

(2) The LINK command 	can generate an object file of up to approx. 36K bytes. The MLINK com

mand is used when the file exceeds this size to generate object files of up to approx. 46K bytes.

However, the MLINK command takes twice as long as the LINK command to generate an object

file because the MLINK command links relocatable programs using a 2-pass system. The following

diagrams show memory maps applicable to execution of the LINK and MLINK commands.

Monitor

Floppy DOS

LINKER

Link area

Symbol table

Stack area

Reserved 	

12AOH12AOH
Monitor

Floppy DOS

MLINKER

Symbol table

Unused

Stack area

Reserved

The object
program is

} The 0,hject pro generated
gram IS gene on the
rated in this area, disk.
then saved on
the disk.

FEOOH FEOOH
LINK command MLINK command

4.4.26 MON · 	 Built-in

Format!

MON

I Function I

The MON command returns control to the monitor.

I Programming notes I

Control is transferred to Floppy DOS from the monitor with the following monitor command.

*J
J-adr.$12AO

SYS-48

4.4.27 PAGE Transient

I Format I

PAGE output-device or PAGE n

I Function r

The PAGE command carries out a paging operation on the output device specified hy output-device,

or sets the number of lines per page on LPT.

I Default file mode I

None.

I Switches I

None.

I Wildcard characters I
None.

I Examples I

~. (1) PAGE or PAGE $ LPT

Carries out a fonn feed on LPT.

(2) PAGE 	$ PTP

Produces a feeder tape on PTP.

(3) PAGE 22

Sets the number of lines per page on the LPT to 22. The print fonn is fed to the top of the next

page when a page feed code is issued or the TOP OF FORM button is pressed.

4.4.28 POKE Built-in

I Format I
POKE $nnnn, datal, , $uuuu, dataN

I Function I

Stores datal consisting of an even number of digits in and from address $nnnn (4-digit hexadecimal

number) on, and stores dataN consisting of an even number of digits in and from address $uuuu

on. Any address is accessible. The maximum length from POKE to dataN is 160 characters including

ODR, space, etc.

I Default file mode I
None.

I Switches I

None.

I Wildcard characters I

None.

I Examples I

POKE $OOOD, 2010, $OOOF, 40

Stores 20 in address $OOOD, 10 in $OOOE and 40 in $OOOF.

POKE 	 $OOOD, 1235678, 12, $OOOF, 40

Not allowed

SY8-49

4.4.29 PROM 	 Transient

I Format I

PROM

The PROM command converts the format of the object file to an appropriate PROM writer format.

None.

None.

None.

I Function I

I Default fIle mode I

I Switches I

I Wildcard characters I

I Example I

(1) 	PROM

Invokes the PROM formatter program and enters the command mode. Refer to the "PROM For

matter" manual for further information.

4.4.30 RENAME 	 Built-in

I Format I

RENAME oldnamel, newnamel, , oldnameN, newnameN

The RENAME command renames specified files.

None.

An asterisk may be used to specify the file mode (. *).

I Function I

I Default file mode I

.ASC

I Switches I

I Wild card characters I

I Examples I

(I) 	RENAME TESTl, TEST2

renames TEST 1.ASC to TEST2.ASC.

(2) RENAME 	$FD2; TESTl . OBJ, TEST2, TEST3 . RB, TEST4

Renames TESTl.OBJ on the disk in FD2 to TEST2.0BJ and TEST3.RB on the disk in the default

drive to TEST4.RB.

SVS-50

http:TEST4.RB
http:TEST3.RB

I Programming notes I

(1) 	Files with the file attribute W or P cannot be renamed.

(2) The command RENAME $FD2;TESTl, $FD2;TEST2 cannot be executed since $FDn specified

for the old name ~pplies to the new name, which is illegal.

(3) 	The command RENAME TESTI.LIB, TEST2.RB cannot be executed since the file modes of the

old and new names disagree.

(4) 	The command RENAME TEST.LIB, TEST2 can be executed normally. The new name is assigned

the file mode of the old name.

4.4.31 REW 	 Built-in

I Format I

REW

I Function I

Rewinds the cassette tape.Control is transferred to the next command as soon as the rewind operation

has been started.

4.4.32 RUN 	 Built-in

I Format I

RUN filename or Iue name

The RUN command executes the program in the object file specified by the argument.

None.

None.

I Function I

I Default fIle mode I

.OB], .SYS

I Switches I

I Wildcard characters I

http:TEST2.RB

I Example I

(1) 	RUN TEST

Executes the program TEST.OBJ. When its loading address is such that it overwrites the Floppy

DOS area, the system issues the message

destroy Floppy DOS?

on the CRT. When the programmer press the [YJ key, the system loads the program, overwriting

the Floppy DOS area and executing it. When the programmer presses the [NJ key, the system issues

the error message 11 memory protection 11 and waits for a new DOS command.

(2) 1 > TEST

Accesses the drive I to seek .SYS mode file and executes it if found. If not found, error occurs.

(3) 2] TEST

Accesses drive 2 to seek program TEST.SYS and executes it if found. If not found, it seeks TEST

.OBJ and executes it if found. If not found, error occurs.

I Programming no tes I

The meanings of the prompt symbols (> and]) are shown below.

Command fUename
,

RUNfUename RUN $FDn
fllename RUN $nnnn _" i

File mode .SYS
. OB]

. OB] . OB]

Prompt
>

Accesses the drive 1
to seek. SYS mode
me and executes it
if found. If not found,
error occurs.

Accesses the default
drive to seek. OBJ
mode file and executes
it if found . If not
found, error occurs.

Accesses $FDn to
seek. OB] mode
file and execu tes it
if found. If not
found, error occurs.

Calls address $nnnn.

Prompt
]

Accesses the default
drive to seek. SYS
mode file and executes
it if found. If not
found, it seeks. OB]
mode me and executes
it if found. If not
found, error occurs.

Same as above. Same as above. Same as above.

4.4.33 SIGN 	 Transient

I Format I
SIGN $FDn

I Function I

The SIGN command defines or changes the password and/or volume number of the disk in the speci

fied drive.

I Default file mode I
None.

I Switches I
None.

Wildcard characters I

None.

SVS-52

I

I Example I

(1) 	SIGN

Old sign? SHARP +- Proceeds to the next step if the password entered matches the o!d password.

New sign ? MZ-80

New volume No? 79

The above interaction changes the password from "SHARP" to "MZ-80" and defines the volume number as 79.

4.4.34 STATUS Transient

I Format I

ST A TU S devicename, $nnnn

I Function I

The STATUS command displays or sets the control status of the specified device. The control status

information is used to initialize the I/O controllers. Refer to "User I/O Routine" in Appendix for

details.

~ I Default file mode I
None.

I Switches I

None.

I Wildcard characters I

None.

I Examples I
(1) 	STATUS $SOA, $ODCC

Sets the SOA control status to ODCC (hexadecimal).

(2) STATUS 	$USRl

Displays the control status of USR 1 on CRT.

(3) STATUS 	$LPT, $0000

L 00 normal mode

12 double-size mode

14 reduced mode

I Programming no te I

This command is available for the serial I/O devices ($SIA, $SIB, $SOA and $SOB), $LPT and user

devices ($USRI to $USR4). Any STATUS command set for $CMTl, $PTR, $KB, $CRT, $FDl to

$FD4, $CMT, $MEM or $PTP will be invalid.

4.4.35 TIME Built-in

I Format I

TIME mm : dd : ss

I Function I
The TIME command sets or displays the time of the system clock.

I Default file mode I

None.

I Switches I

Global switch / P : Specifies that the time is to be printed on LPT.

I 	Wildcard characters I

None.
 SYS·53

I Examples I

(1) 	TIME 20 : 30 : 40

Sets the system clock to 20 hours, 30 minutes and 40 seconds.

(2) 	TIME

Displays the current time on CRT.

(3) 	TIME/P

Prints the current time on LPT

4.4.36 TYPE 	 Built-in

I Format I

TYPE filename l, , nlenameN

I FunctioIl; I

The TYPE command outputs contents of the files specified by the arguments on the CRT or LPT

device.

I Default tIle mode I

.ASC

I Switches I

Global switch IP: Specifies that the file contents are to be printed on the LPT device.

I Wild card characters I

Allowed.

I IExamples

(I) 	TYPE TEST

Displays the contents of source file TEST. ASC on CRT.

(2) 	TVPE/P TESTl, TEST2

Prints the contents of source files TESTI . ASC and TEST2 . ASC on LPT.

4.4.37 VERIFY 	 Transient

I Format I

VERIFY sourcefile l, destinationf'Ile l, , sourcefileN, destinationfileN

I Function I

The VERIFY command compares the contents of the source and destination files specified by the

arguments and displays any mismatching contents on a line basis (if their file mode is .ASC) or on a

byte basis (if the file mode is other than .ASC).

I Default file mode I

.ASC

I Switches I

Global switch IP: Specifies that the matching results are to be printed on LPT.

I Wild card characters I

Allowed for source files (see example (4) below).

SYS·54

I Examples I
~.

(1) 	VERIFY TESTl, TEST2

Matches source files TEST1.ASC and TEST2.ASC and displays mismatching lines on CRT.

(2) VERIFY IP $C~T; XYZ, $FD2 ; TEST

Matches source file XYZ.ASC on CMT with source file TEST.ASC on the disk in FD2 and prints

the results on LPT.

(3) VERIFY 	$CMT, $FD2

Matches the first file on CMT with the file on the disk in FD2 which has the same name as the

file on CMT. An error is generated if file on CMT has no file name.

(4) VERIFY 	$CMT; TEST * , $FD2

Matches the first flie on CMT whose name matches TEST * with the file that name on the disk

in FD2. Note that only the first file whose file name matches TEST* is taken.

4.4.38 XFER 	 Built-in

I Fonnat I

XFER sourcefile l, destinationfile l, , sourcefileN, destinationfileN

I Function I

The XFER command transfers the contents of source files to destination files.

I Default file mode I
. ASC

I Switches I

None.

I Wildcard characters I

Allowed for the source files (see example (5) below).

I Examples I
(1) 	XFER TESTl, TEST2

Transfers the contents of source file TEST1.ASC to TEST2.ASC.

(2) 	XFER $PTR, $LPT

Reads the file on PTR and prints it on LPT.

(3) 	XFER $CMT; XYZ.OBJ, $FD2

Reads object file XYZ.OBJ from CMT and creates object file XYZ.OBJ on $FD2.

(4) 	XFER $CMT, $FD2

Reads in the fust file on CMT and creates a flie with that file name on the disk in FD2. An error

is generated if flie on CMT has no file name.

(5) XFER $CMT; TEXT * , $FD2

Reads in the first file on CMT whose file name matches file name TEST* and creates a file with

the same name on the disk in FD2. Note that only the first source file on CMT whose file name

matches TEST * is taken.

SVS-55

(6) 	XFER $KB, TEST

Reads a file from the system keyboard and creates source file TEST.ASC. The file read from the

keyboard is terminated by pressing the I BREAK I key.

(7) XFER 	$FD2; * . ASC, $FD3

Transfers all source files on the disk in FD2 to that in FD3. The source drive must not contain

files with the file attribute R or P.

(8) XFER * . * ,FD2

Transfers all files on the disk in the current default drive to that in FD2. The source drive must

not contain files which have the file attribute R or P.

SVS-56

4.5 DOS Command Summary

The DOS commands are broadly divided into built-in commands (Table 4-1) and transient commands

(Table 4-2). Transient commands are implemented in relocatable file fonn on the Floppy DOS disk.

They are loaded into the transient area in main memory by the boot link er and linked to the Floppy DOS

main program as required.

In the command format in Table 4, the items enclosed in brackets are optional.

Table 4-1 Built-in commands

BOOT

Tenninates the Floppy DOS and activates system IPL.
Example: BOOT..)

CHATR sign, filenamel, attribute [, ... fdenameN, attribute]

Matches the password's sign and changes the me attribute(s) of the matching me(s) identified by fIlename to
attribute(s).
P: Permanent me R: Read inhibit
0: No protection W: Write inhibit
Examples: CHATR KEY, ABC, 0, XYZ, P..) : Deletes the fIle attribute of me ABC and changes the me attribute

of me XYZ to PERMANENT if matches occur with the password
KEY.

CHATR KEY, $FD2 ; UVW, R..) : Changes the me attribute of fIle UVW in FD2 to READ INHIBIT
if a match occurs with the password KEY.

CHATR ..) : This allows the progranuner to interactively specify the password,
me name and attribute.

CONSOLE Sscrolling-start-line, end-line [, Ccharacter-number, R,N]

Sets the scrolling area on the CRT screen, sets the character display mode and/or reverses the picture on the screen.
Example: CONSOLE C80..) : Sets the number of characters per line to 80.

CONSOLE R..) : Reverses the picture on the screen.

DATE [MM.DD.YV]

Displays the current date or sets the specified date in month, date, year format. The set information is used as me
information when new ftles are created.
Global switch / P ..)
Examples: DATE/P..)

DATE 12.25.80..)

DELETE filenamel [, ... ,filenameN]

Deletes the fIle(s) specified by mename(s).
Global switch / C

Examples: DELETE ABC. *..)
DELETE / C A * . * ..)
fIlename : ABC.ASC deleted
fIlename : ABC.RB
fIlename : AXY.OBJ permanent

: Specifies that the date is to be printed on the LPT.
: Lists the current date on the LPT.
: Sets the current date to December 25, 1980.

: Specifies that each me name is to be displayed on the screen for
verification. The programmer must enter Y to delete it or N to
suppress deletion.

: Deletes all fIles identified by ABC. * .
: Displays fIles identified by A * . * on the screen for verification

before deletion.
+- Indicates that the fIle is deleted since "Y" is entered.
+- Indicates that the fIle is not deleted" N" is enterd.
+- Indicates that the fIle is not deleted because it is assigned the

PERMANENT fIle attribute.

SVS-57

Table 4-1 Built-in commands cont.

DIR [$FDn] or [fdename]

Displays me information in the directory specified by $FDn or of the file specified by mename on the screen.
Global switch IP : Specifies that the me infonnation is to be output to LPT. The fIle information is displayed

on the screen when this switch is not specified.
Examples: DIR~

DIR/P $FD2 ~

DIR $FD2 ;ABC. * ~

EXEC filename

: Displays all file infonnation in the current directory on the screen.
: Outputs all FD2 file names to LPT and switches the currently logged

disk to FD2.
: Displays the me information of files in FD2 identified by ABC. * .

Executes the contents of the me identified by mename as DOS commands.
Example: EXEC ABC . ASC ~ :-Sequentially executes the DOS commands in me ABC.

FAST

Fast forwards the cassette tape.
Example: F AST ~

FREE [$FDn]

Lists statistical infonnation about the disk identified by $FDn on the screen or on the LPT.
Example: FREE $FD2 ~

$FD2 master left: XXXX used : YYYY
Indicates that the diskette on FD2 is a master disk, that the number of unused sectors is XXXX
and that the number of used sectors is YYYY.

KEY keynumber = 11 S 11

Assigns a function to the defmable function key indicated by a keynumber from 1 through 20. The function is
specified by writing a string or command name enclosed in double quotation marks.
Example: KEY 1 ="RUN~" ~ : Assigns the function of the RUN command to key 1.

KLIST

Lists the defmition status of the defmable function keys on the screen.
Example: KLIST ~

MON

Tenninates Floppy DOS processing and returns control to the monitor.
Example : MON ~

POKE $nnnn, data [., .. ,' $uuuu, dataN]

Stores data in the specified addresses in memory.
Example: POKE $OOOD, 2010, $OOOF, 40 ~

RENAME oldnamel, newnamel [, .. " oldnameN, neWnameN]

Renames the fIle specified by oldname to newname,
Examples: RENAME ABC, XYZ ~ : Renames file ABC to XYZ.

RENAME ABC, DEF, UVW, XYZ ~: Renames me ABC to DEF and (NW to XYZ.

SYS-58

Table 4-1 Built-in commands cont.

-
-

REW
,

Rewinds the cassette tape.
Example: REW....;

.
RUN filename

Executes the program in the object me identified by mename.
Example: RUN ABC""; : Executes the program in file ABC, assuming it ot be ABC.OBJ.

TIME [HH: MM: SS]
~

Displays the current time or sets specified time in hour, minute, second format.
The current time is set to 00 : 00 : 00 upon system start.
Global switch JP : SpeCifies that the current time is to be listed on the LPT.
Examples: TIME/P; : Lists the current time on the LPT.

TIME 16: 30 : 30....; : Sets the current time to 16 : 30 : 30

TYPE fdenamel [, ... , fdenameN] (?, *)

Lists the contents of the me(s) identified by filename(s) on the screen or on LPT.
Global switch JP : Lists the file contents on LPT.
Examples: TYPE ABC, DEF; : Displays the contents of mes ABC and DEF on the screen.

TYPE J P $FD3 ; XYZ; : Lists the contents of me XYZ in FD3 on LPT.
TYPE $PTR""; : Reads paper tape data from PTR and displays it on the screen.

XFER sourcefdel, destinationfde2 [, ... , sourcefileN, destinationfdeN,] (sourcefile only? , *)

Transfers the source me(s) to the destination flle(s).
Examples: XFER ABC, XYZ; : Copies me ABC to XYZ.

XFER $PTR, DEF; : Transfers the file at the PTR to file DEF.
XFER XYZ, $PTP JPE""; : Transfers me XYZ to the PTP with even partiy in ASCII code.

SYS-59

Table 4-2 Transient commands

ASM -fIlename

Assembles the source file identified by fIle name and produces a relocatable file and an assembly listing.
Global switch (none) : Specifies that the relocatable file is to be output.
Global switch/N : Suppresses generation of the relocatable file.
Local switch/O : Specifies that the relocatable file is to be output with the specified me name.
Local switch/E : Specifies that error statements are to be output to the specified me.
Local switch/L : Specifies that the listing is to be directed to the specified fIle.
Examples: ASM ABC ~ : Assembles source fIle ABC and generates relocatable file ABC.RB.

ASM/N ABC, $CRT lE ~ : Assembles source fIle ABC and displays error statements on the
screen (no relocatable me is created).

ASM ABC, XYZ/O, $LPT IL') : Assembles source file ABC and generates relocatable me XYZ.RB
and an assembly listing on the LPT.

ASM ABC, $FD2 ; XYZ I L, $LPT lE.) : Assembles source me ABC outputs the assembly listing to
me XYZ.ASC in FD2 and outputs error statements on the
LPT.

-ASSIGN devicename, address
- -

"
-

Sets the address of a user device drive routine.
Example: ASSIGN $USRl, $BOOO ~ : Sets the drive routine address of user device $USRl to BOOO

(hexadecimal).

BASIC ftlenanre .~.

Invokes the BASIC compiler to compile the source program identified by filename.
Example: BASIC XYZ ~ : Invokes the BASIC compiler, compiles source fIle XYZ.ASC and generates relocata

ble me XYZ.RB.

CONVERT

Converts a me generated with the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series into a fIle which
can be used under Floppy DOS, or converts a me generated with Floppy DOS into a me which can be used under
the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series.
Example: CONVERT ~

COpy

Copies the fIles on the disk in drive 1 to the disk in drive 2. The system matches the passwords in these disks
before carrying out a copy operation.
Example: COpy ~

DEBUG -fIlename [, ... , ftlenarneN]

Invokes the symbolic debugger and links and loads relocatable me(s).
Global switch IT : Specifies that the symbol table information is to be output.
Global switch IP : Specifies that the listing is to be directed to the LPT (the listing is displayed on the

screen if omitted).
Local switch 10 : Specifies that the object fIle is to be generated with the specified file name.
Example: DEBUG ABC, DEF ~ : Invokes the symbolic debugger, links and loads relocatable files ABC

and DEF and waits for a symbolic debugger command.

EDIT [ftlename]

Loads the text editor and reads in the fIle (if specified). The file must be an ASC mode fIle.
Examples: EDIT ~ : Loads the text editor and waits for an editor command.

EDIT $FD2 ; ABC ~ : Loads the text editor and reads in me ABC from FD2.

SY8-60

Table 4-2 Transient commands cont.

FORMAT [$FDn)

Initializes the disk in $FDn in the system format. The password set by the SIGN command is checked before

execution.

Examples: FORMAT~ : Initializes the currently logged-on disk.

FORMAT $FD2 ~ : Initializes the disk in FD2.

HCOPY n

Copies a data frame from the CRT screen to the LPT.
Examples: HCOPY 4 ~ : Copies a data frame from the CRT where the contents of graphic areas 1 and 2 are

displayed simultaneously.

LIBRARY fllenamel [, ... , filenameN)

Unks specified file(s) into a library me.

Global switch (none) : Specifies that the link information is to be displayed on the screen.

Global switch IP : Specifies that the link information is to be printed on the LPT.

Examples: LIBRARY ABC, DEF, ~ : Links relocatable mes ABC and DEF and stores their contents into

library flle ABC.LIB
LIBRARY ABC, DEF, XYZ /0 ~ : Links relocatable flles ABC and DEF and stores their contents

into library flle XYZ.LIB.

LIMIT address

Sets or changes the end address of the memory area managed by Floppy DOS.
Examples: LIMIT $BOOO ~ : Sets the Floppy DOS area to BOOO (hexadecimal).

LIMIT MAX ~ : Sets the Floppy DOS area to the maximum available -address.

LINK fllenamel [, ... , fdenameN) ·

links relocatable fIles identified by fIlename 1 through fIlenameN and outputs an object flle with a link table listing.
Global switch IT : Specifies that the symbol table information is to be listed.
Global switch IP : Specifies that the listing is to be directed to the LPT (the listing is displayed on the

screen if the switch is omitted).
Global switch IS : Specifies that a system flle is to be generated.
Examples: LINK ABC, DEF ~ : Unks relocatable fIles ABC and DEF and outputs object flle ABC.OBJ

LINK/TIP ABC, DEF, XYZ/O~: Links relocatable files ABC and DEF and outputs object flle XYZ.
OBJ with the link table information on the LPT.

LOAD fllename

Loads the object flle identified by fllename into the area immediately following the area established by the LIMIT

command.

Example: LOAD ABC.OBJ ~ : Loads object flle ABC.OBJ into memory.

MLINK fllenamel [, ... , filenameN]

Links relocatable flles identified by filename 1 through filenameN and outputs an object flle with a link table listing.
This command can link files to generate an object file of up to 46K bytes, although the LINK command can only
deal with up to 36K bytes.
Global switch/T : Specifies that the symbol table information is to be listed.
Global switch IP : Specifies that the listing is to be output on the LPT (the listing is displayed on the

screen if this switch is omitted).
Example: MLINK ABC, DEF ~ : Links relocatable flles ABC and DEF and outputs object fIle ABC.OBJ.

SYS·61

Table 4-2 Transient commands cont.

PAGE [output-device] or nn

Performs a form feed operation on the output de ·ce identified by output-device, or sets the number of lines per page
on the LPT.
Examples: PAGE,)

PAGE 22.)
: Moves the pri t position to the home position of the printer form.
: Sets the numb r of lines per page on the LPT to 22. The print form is fed to the

top of the nex page when a page feed code is issued or the TOP OF FORM button
is pressed.

PROM

Generates formatted code on the paper tape pun h from an object fIle. Applicable PROM writers are those which are

supplied by Britronics, Intel, Takeda and Minato Electronics.

Example: PROM .)

SIGN [$FDn]

Changes the password of the disk in $FDn.

During a disk copy or formatting operation, the stem checks the programmer-specified password with that stored

in the disk directory for a match and carries out e specified operation only when a match occurs.

Example: SIGN,) : Changes the p ssword of the disk currently logged on.

STATUS devicename, status

VERIFY fdenamel, fIlename2 [, ... , fIlenameN-l, . (?, * only for fIleriamel, ... , ftlenameN-l])

Compares the contents of fIles fIlenamel throu
Global switch IP : Specifies that e results of the comparison are to be listed on the LPT.
Example: VERIFY $CMT, $FD2 ; ABC .) ompares the first fIle on the cassette tape with source fIle ABC in

D2.

.~

SY8-62

4.6 System Error Messages

There are four system error message formats.

ERR: error message

Pertains mainly to coding errors. Issued when invalid commands are detected.

- ERR filename (device name) : error message

Indicates errors pertaining to file or device specifications.

- ERR logical number: error message

Indicates errors pertaining to logical number specifications.

- ERR logical number file name (device name): error message

Indicates errors pertaining to logical number specifications and file (or device) specifications.

The system error messages are listed below. The error numbers are not output.

ERR syntax

2 il command

3 il argument

4 il global switch

5 il data

6 il attribute

7 different me mode

8 illocal switch

9 il device switch

10
11 no usable device

12 double device

13 directory in use

14
15
16 not enough arguments

17 too many argument

18
19
20 no memory space

21 memory protection

22 END?

37 Break

38 system id

39 System error

; Illegal m~ attribute found

; Device unavailable

; Disk not conforming to Floppy DOS fonnat.

; System malfunction, user program error, disk replaced

improperly, etc.

SYS-63

50 not found

51 too long me

52 already exist

53 already opened

54 not opended

55 read protected

56 write protected

57 permanent

58 end of me

59 no byte file

60 not ready

61 too many mes

62 disk volume

63 no me space

64 un format

65 FD hard error

66 il data

67 no usable disk

68 (sub)master disk

69 mismatch sign

70 il me name

71 il me attribute

72 il me type

73 il me mode

74 illu#

75 not ready

76 alarm

77 paper empty

78 time out

79 parity

80 check sum

81 flaming

82 over run

83 interconnect

84 full buffer

85 uncon trollable

86 interface

87 less data

88 much data

89 lu table overflow

90 source?

91 destination?

92 can't xopen

93 too long line

94 end of record

95 diff record length

/~

; File size exceeds 65535 bytes

; The me has been already opened or
the logical number is already used.

; Number of mes exceeds 96

; Disk replaced improperly

; Disk unformatted

; Hardware related disk error

; Invalid me name

; Invalid file attribute

; Invalid me type

; Invalid me mode

; Invalid logical number

} ; Printer error

} ; Paper tape reader or punch error

I; Serial I/O errors (to be implemented later)

I; IEEE-488 related errors (to be implemented later)

; Attempt made to open too many files

; Line exceeding 128 bytes

SYS-64

· 5. MU·TUAL CONVERSION 	 .

Mutual conversion between files generated by different system programs are possible for the following

combinations of files using the conversion procedure shown:

Possible Combinations of Files

BASIC MZ-80B BASIC interpreter, Versions SB-551 0, -5610, -6510 and -6610.

Floppy DOS MZ-80 Floppy DOS or BASIC comPil.er SB-7xxx

K 	 MZ-80K

FD 	 Floppy disk.

CMT 	 Cassette tape.

BTX 	 BASIC interpreter text file.

BSD 	 BASIC interpreter sequential data fue.

ASC 	 ASCn file.

OBJ 	 Object fue.

Example

When converting BRD generated by D-BASIC to File of a form acceptable by Floppy DOS:

D-BASIC and Fig. 1 used

D-BASIC BRD) D-BASIC BSD

1
DOS convert command used

Floppy DOS BRD) Floppy DOS ASC

BASIC-compiler and Fig. 2 used

10 REM BRD ~ BSD sample conve~sion p~09~am. 	 le REM BSQ. BRD sample conve~sion p~09~am.
20 INPUT "RND FILE? ";RS 	 213 INPUT "SEQ FILE? ";8S
30 INPUT "SEQ FILE? ";S$ 	 313 INPUT "RND FILE? ";RS
40 XOPEN #l,RS: WOPEN 12,S$ 	 40 ROPEN 11,SS: XOPEN 12,R$
se 1=1 	 se 1=1: DS=CHRS(SeD)
60 INPUT 11(I),A$: IF EOF(ll) THEN CLOSE END 	 613 AS=""
713 PRINT #2,AS: 1=1+1: GOTO 613 	 713 INPUT 11,8S: IF EOF(ll) THEN CLOSE: END

ae AS=AS+BS: L=LEN(A$)
90 IF L)32 THEN PRINT "ERROR": CLOSE: ENDFig. 1
lee IF L(32 THEN A$=A$+D$: L=L+l
110 IF L(32 THEN 70
120 PRINT #2(I),AS: 1=1+1: GOTO 60

Fig. 2

BASIC

BASIC

BASIC

BASIC
,~ BASIC

BASIC

K

K

K

FD/CMT

FD

FD

CMT

CMT

FD/CMT

CMT

CMT

CMT

BTX

BSD

BSD

BSD

BSD

OBJ

BTX

ASC

OBJ

~

~

~

~

~

~

---+

~

~

Floppy DOS

Floppy DOS

Floppy DOS

Floppy DOS

Floppy DOS

Floppy DOS

BASIC

Floppy DOS

Floppy DOS

FD/CMT

FD

CMT

FD

CMT

FD/CMT

CMT

FD

FD

Mode

ASC

ASC

ASC

ASC

ASC

OBJ

BTX

ASC

OBJ

use DOS CONVERT command

use DOS CONVERT command

use DOS CONVERT command

use DOS XFER command

fully compatible

use DOS CONVERT command

use convert-tape (MZ-80TIOC)

use DOS XFER command with $CMTl

use DOS XFER command with $CMTl

SYS-65

http:comPil.er

