
Personal Computer

lllZ·OOrnJU
Linker

SHARP

~~-~~

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP ~
CORPORATION. Hardware and software specifications are subject to change without
prior notice ; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini­
floppy disk files) .
This manual is for reference only and the SHARP CORPORATION will not be res-

~ ponsible for difficulties arising out of inconsistencies caused by version changes,
~ typographical errors of omissions in the descriptions.
~ This manual is based on the SB-1500 series monitor and the SB-7000 series Floppy

L~~~~~·~·-·-·--~·-~~·~-~·-~~~~·-~~~~~~

-CONTENTS-

IN"TRODUCTION . 1

LOADING ADDRESS . 2

RELATIONSHIP BETWEEN THE EXECUTION ADDRESS
AND LOADING ADDRESS . 3

OFFSET .. 6

LOADING ADDRESS AND EXECUTION ADDRESS
(ORG STATEMENT) . 7

SYMBOL TABLE . 8

LINK/T· COMMAND . 9

LINK MESSAGE EXAMPLES . 11

ERROR MESSAGES . 12

LINK

INTRODUCTION

The linker for the SHARP MZ-80B inputs relocatable files output by the assembler or the BASIC com­

piler and outputs object files.

Relocatable files are not programs which are directly executable by the CPU, but are files which contain

information used to keep programs relocatable. They also contain global symbols in ASCII code which are

declared to link two or more program units.

The tinker fetches relocation information and loads object programs into the link area in main memory

while adding the programmer-specified loading address to the relocatable addresses. When two or more

relocatable program units are loaded, units are appended to the first program unit (file), if the loading

address is specified for the first unit.

The linkage operation itself is described in detail in Section 2.3, "Linker" of the System Command

manual. However, the programmer does not need to be aware of details of the linkage operation details.

When outputting the object program (object file), it is necessary to specify the loading address and the

execution address.

Program unit 1

Program unit 2

Relocatable flles

LINKER

Linkage and relocation

Link information

Symbol table

LINK-1

Object program

Object flle

LOADING ADDRESS

The loading address specifies the address at which the object program is to be loaded. When this

address is not specified, Floppy DOS assumes the starting address which can be managed by Floppy DOS

as loading address.

LINK TESTl, TEST2

LINK $12AO, TESTl, TEST2

Links TEST 1 and TEST2 and assigns the loading

address to the beginning of the area managed by

Floppy DOS.

Links TEST 1 and TEST2 and assigns the loading

address to 12AOH.

The figure below shows the flow of files from the time they are linked by the linker until they are

executed with the RUN command. Numbers CD through ® in the figure denote the processing sequence.

LINK $12AO, TESTl, TEST2
0000

Monitor
12AO

0 TESTI. RB
Floppy DOS

00 ~ Load CD
Link er

+- The linked object program
TEST 1. OBJ

® in memory has an address Relocatable flies

/
TEST 2. OBJ

Save format such that· it is loaded
0 Link area and executed at address 00

TEST2. RB
® 12AO (hexadecimal).

Symbol table·
Object flle TESTI. OBJ

Stack area 00
Reserved 0

7
7

RUN TESTl
0000

Monitor @
12AO

®(Floppy DOS

The object program is then When the RUN command is
moved to the area starting at TESTI. OBJ executed, the object program
the loading address. In this is temporarily loaded into the
case, the system displays a area under control of Floppy
warning message indicating DOS.
that Floppy DOS will be
destroyed and waits for a user
response.

Stack area

Reserved

LINK-2

RELATIONSHIP BETWEEN THE EXECUTION ADDRESS AND LOADING ADDRESS

The programmer may specify the execution address as well as the loading address when outputting an

object file through the tinker.

LUNK $8000,TESTl,TEST2,EXEC$8200

The above command links and loads relocatable program unit files TESTl and TEST2 into memory,

specifying a loading address of 8000 (hex) and an execution address of 8200 (hex).

Examples of linkage and loading are given below (numbers in circles in the figures denote the processing

steps). The first example uses a simple RUN command.

r: 0

0 Loaded by the RUN command
00

(
The objec
LINK $8

t program is generated by: J
000, TESTl, TEST2, EXEC$8200 ..J

Monitor

Floppy DOS

Object program

Stack area

Reserved

®

[)
820 0

Control is transferred to
address 8200 after pro­
gram loading is completed.

Memory after loading with Floppy DOS RUN command

Note: Any loading address or execution address is invalid for LINK/Seven if specified.

LINK-3

When the monitor is used to load the object program, its starting address in memory is designated by

the loading address. The program counter is set to the address designated by the execution address after

the object program is loaded. The figure below shows how an object program with a loading address of

12AO and an execution address of 2000 is loaded and how control is transferred.

0000
Loading address_

Loaded via monitor
* L .J

Execution address= 2000 (hex)
Loading address= 12AO (hex) •

~12AO

The DOS XFER command is useful for trans­
ferring the object program to a cassette tape
me.
Coding example:
LINK $12AO, TESTl , TEST2, EXEC$2000 .J
XFER TESTI. OBJ, $CMT .J

Monitor

Object program

Execution address

®j
2000

Memory after loading with the monitor program

DEBUG< fllenamel

[

When both loading and ex
are omitted, the system
spe~ified addresses for the
cutlon.

0000

0 12AO
00

~fllenamel >

m
00 ®
0 <fllename2>

>, < fllename2 > .
ecution addresses l
assumes system-
loading and exe-

Monitor

Floppy DOS

Symbolic debugger

Object program

Stack area

Reserved

Executed with the
G or I command)

®

Memory after loading with the symbolie debugger

LINK-4

Subroutine programs created with the assembler and BASIC programs created with the BASIC compiler

may be linked using a library (see the "Programming U~ility" manual) or the BASIC USR statement.

Here, an example is given of linking an object program with a BASIC program using the USR statement.

The figure below shows how an object program is loaded and linked with a BASIC program. The area

in memory which is managed by Floppy DOS is reduced with the DOS LIMIT command to create a

free area. The object program is loaded into this free area with the Floppy DOS or BASIC LOAD state­

ment. The BASIC program can then call the object program as a subroutine using the USR() statement.

(
Coding example:
LINK $COOO, TE

0000

12AO

DOS command included in
the BASIC program which
loads the object program

0 00
~

STI, TEST2 ~)

Monitor

Floppy DOS

BASIC program {OBJ)

RET

Stack area

Reserved

)
CD

Linked with the BASIC
statement USR ($COOO)

DOS command LIMIT

(

Creates a free area)
outside the Floppy
DOS controlled area.

Memory after loading with a DOS command in a BASIC program

LINK-5

OFFSET

The programmer can specify an offset to reserve a free area between two object program units.

LUNK TEST1,$1000,TEST2 Links TEST 1 and TEST2 so that the object program

is loaded at the area equivalent to 1000 (hex) addresses

reserved between them.

Execution of the above command is illustrated below.

00 TESTI. RB
0 ~ Load

Re locatable files

V 00
0 TEST2. RB

0000
Monitor

12AO
Floppy DOS

Linker

TESTI. OBJ

TEST2. OBJ

Symbol table

Stack area
FFOO

Reserved

Memory after loading with the
DOS LINK command

+-Offset
(4K bytes)
Link area

Monitor

Floppy DOS

TESTl. OBJ
-

TEST2. OBJ

Memory after loading with the
DOS RUN command

+- Offset
(4K bytes)

Note that the loading address and offset are carefully distinguished in the following command:

A 4-digit hexadecimal number preceded by a $ symbol in the first argument position is always

interpreted as the loading address.

LINK $8000, TESTl, $1000, TEST2, TBL$20, EXEC$8200

T T T~
Loading address Offset (4K bytes) Symbol table size Execution address

(approx. 8K bytes)

Note: Any loading address or execution address is invalid for LINK/Seven if specified.

LINK-6

LOADING ADDRESS AND EXECUTION ADDRESS (ORG STATEMENT)

Although a loading address can be specified with the tinker, it can also be specified with the ORG

assembler directive during assembly. Assume that there are two relocatable files.

TEST 1 : Assembled with loading address 6000H specified. The object file will be loaded in the area

from 6000H through 6COOH.

TEST2: Assembled with loading address 7000H specified. The object file will be loaded in the area

from 7000H through 7 AOOH.

These are linked as follows.

LINK TEST 1, TEST2

Then, the object files are loaded as shown in the memory map below and the execution address of

TEST I . OBJ is automatically set to 6000H.

Monitor

Floppy DOS

Unker

TESTl. OBJ
-- ---- - - - -- - ~-

- - - - - - - ·- - - - - --
TEST2. OBJ

Symbol table

Stack area

Reserved

}
400H
(7000H-6COOH)

Memory map during linking

6000

6COO
7000

7AOO

Monitor

Floppy DOS

TESTl. OBJ
r- - - - - ---- ----- - -

r-------------
TEST2. OBJ

Memory map during execution

The loading addresses specified during assembly are valid even if the loading addresses and offsets are

specified in the LINK command. However, when no loading address is specified for TEST2 during

assembly, the offset specified in the LINK command is valid. The execution address specified in the LINK

command is valid.

LINK $5000, TESTl, $3000, TEST2, EXEC$6100

6000

6COO

7000

7AOO

Monitor

Floppy DOS

TESTl. OBJ --------------
-- - - - - - - - - - -

TEST2. OBJ

) Control is transferred to location
6100 after loading.

61 00

Memory map during execution

Loading addresses specified during assembly are invalid when the LINK/S command is used to generate

a system file.

LINK-7

SYMBOL TABLE

Information referred to as symbols in the linker and symbolic debugger indicates globally declared

labels (that is, label symbols defined by the ENT or EQU assembler directive) in the source program. This

information is stored in the relocatable file by the assembler for use in linking with other relocatable

programs.

The linker loads label symbols into the symbol table while inputting program units in the relocatable

files. The symbol table is placed at the end of the link area; its size is set to approximately 6K bytes by the

linker unless otherwise specified by the programmer. The programmer can specify an area of more than

6K bytes for the symbol table area using the LINK command as follows:

LUNK TESTl,TEST2,TBL$20 This command links TESTl and TEST2 and specifies a

symbol table size of 2000H (approximately 8K bytes).

TBL$20 in the above command specifies that a symbol table of approximately 8K bytes is to be

created. In other words, the programmer can reserve a symbol table area in 256-byte units. As shown in

the memory map, the symbol table is constructed at the end of the link area.

Each symbol table entry is 9 bytes long. The for­

mat of the symbol table entry is shown at right.

2 3 4 5 6 7 8 9 Section 2.3, "Linker" in the System Command

manual describes how the tinker uses this 9-byte

information to link relocatable program units.

~------~--------~~------

Monitor

Floppy DOS

tinker

Symbol table

Stack area

Reserved

Linker memory map

LINK-8

Symbol name Defmition Address

'

status

Link area

} 6K bytes

(
when table size)
is not specified

LINK/T COMMAND

The LINK/T command is used to display the contents of the symbol table after program linking is com­

pleted. It displays a symbol name, its absolute address (in hexadecimal representation) and the definition

status for each symbol table entry. The user can detect symbol definition errors by checking the defmi­

tion status.

The LINK/T command has two basic formats:

LINK/T TESTl, TEST2 Links TEST 1 and TEST2 and displays the symbol

table on the CRT screen.

LINK/TIP TESTl, TEST2 Links TESTl and TEST2 and prints the symbol table

on the printer:

- The photo at right shows link and symbol table

information displayed on the CRT screen with

the LINK/ T command for the three program

units shown on Page 11. Undefined symbols are

labeled "U".

- Symbol defmition messages are listed below.

Message Defmition

u Undefmed symbol (address or data)

M Multi-defined symbol (address or data)

X Cross-defmed symbol (address or data)

H Half-defmed symbol (data)

D EQU-defmed symbol (data)

No message is attached to symbols for which an

address has been defmed. U, M, X and H indicate

error conditions.

- If global switch/T is not specified, only error symbols (whose_ definition messages are U, M, X or H)

are displayed or printed.

LINK-9

The listing below shows a printout of link and symbol table information. The symbol table entries ~

have been sorted as may be seen from this listing.

Linking M-LANCi#l .RB
Top asm.t•ia ·; $4M:H)
End asm.bias $567:::

Linking ~1-LANG#2. RB
Top asm.bias $5678
Er, d asrn.t•ias $5814

Linking MONEG!U. LIB
Top asrr1.bias $5814
En .j asm.bias $5814

!:;av e M-LANCi. OB,J
Loading a•jdr-ess $4MJ(1
E:-:ecute addr·ess $4A0~3

Bytesize $1114

!;:;ymb o 1 table
t-.!M~;G 57C:2 ~~NL 5784 ~t.F'S:NT 57A1 ~t.PRNT~; 5791;.
1HEXO 574[1 lSET 57F7 2HEXO 5760 2SET c:-,-.,..-.. - .

·-• C•.: .=.•
4HEXO 5776 4SET 5::::32 :::o:::c1T c.-•• - •• -,

._1 .::. ·=··=· ??KEY (1[177
?FEED 52[1/.:. ?TABP 5:374 @EJ;:Rl D (H2!03 @ERR2 D ~J004
@ERR:3 [I 1)0~)5 @ERR4 [I ~3(1~~1/.:. ACCUM 4BF7 AR!:;T7 [I oo:;::::
BDRIVE 4CF9 BELL 0A:30 BKTBL 5A19 BPDUM 5A5:::
BF'FLG 5A57 BP::; IM 5A40 BREAD 4F9B BREAK 4C7C
BR KEY (1527 B~:sT::: [I 0~3:39 BUFFR 5A74 BUSY 4F:;:A
BWRIT 5(1A4 CLBF0 4CED CLBFl 4CEE CLBF2 4CEF
CLBF :?. 4CnJ CLBP 567E: CLEAR 4AS2 CMD 5A::::F
COMMON 5511 COMPL 4BFC COMPR 56:::::: CONT 55~·5
CONT9 5635 CR D (H][I8 CTBL 58E/.:. CUR SOL 5:375
[I! ~JE0E DM [I 00DC DR [I ~~H3DB EFREE [I FFF0
ERCODE 4CF2 ERJMP 4CF5 ER.JPAD 4CF6 ERSECT 4CF4
ERTRK 4CF3 E:3CPRT 52DA FCMD 4CEB FDERR 4AB5
GET! 56DF GET1K 5741 GET2 5711.:· GET4 5731
GET44 572C GETKY 0610 OETL 0BE5 GOTO 4CB~J

H!3 D 00DD IBUFE 11:30 JRTBL s:=:B2 LFLG 5A5A
L I ~;T 4A9F LIST A 529C L I ::;TM 52~.3 LISTN 5251:..
LIST::; 529A LOAD 4ABD LOOK0 5:::t.:.s LOOK1 587:3
LPNT 5A3D MAIN1 4A :~:A MAIN2 4A4E: MELDY OAA3
MEMRY 4BA1 ME:30 5914 MESi 5'~J:3:~: MES10 59:::A
MES11 5990 MEt; 12 59 AB MES; 13 59C1 ME!:: 14 59 De
MES15 59E:3 ME!:: 16 59E4 MES: 17 59E7 ME~: 18 59ED
ME ::;19 59F:;: ME:32 59~:[1 ME:::20 59F7 ME::;2 1 59F9
t1ES22 59 FE ME!::23 5A~35 MES24 5At18 MES25 5A13
MES3 5944 MES4 594E MESS 5';'1 5-:.J ME:::c, 5t;J ~~ .. ~.
t1E!:;7 5972 MESE: 597E ME!:;9 59~:5 MSG 06B5
MTFCi 4CEC 1"1TOFF 4D71 MTON 4D44 NL (1757
NLM::;G 57BF PMSGX 5279 PNL 5251 POT FE [I ~10FE

POTFF [I (h:1FF F'RNT (163C F'RNTS (1~.:;:A F'ROCi 4 c~~11
F'ROTC 57CF PRTAB 52AE PTAB0 5:3BD PTAB1 58(::3
PUSHR ~3DF 1 F'WORK 58(:6 RCLB 4F13 READY 4CFC
REGST 4(:(1] RETRY 4CF1 R:::TRT 552B !:;ACC 51.:.9B
::;AVE 4ABA ::;COMP 5t.B9 SCR [1 (H) [lA ::;EARCH 583[1
SEEK 4D5A SFREE [I 0~30~) SKPBL 57E7 !::OUND 56:3E
S:PROG 5(:.(: 1 :::TAFG 5222 :::TART 4A~3(1 TR [I 0~~1[19

TYPE8 577F TYF'El 5782 TYPE2 57:::c TYPE:::: 578F
VERIFY 51:32 VRFCNT 4CF::: WARN 5A4::: l.JRITE 4C1:3
WR~U3 5A4E WRK1 5A4F WRK2 5A5~~1 WRK ~: 5A51
WRK4 5A52 WRK5 5A5~: WF:K/:.. 5A54 X1HEX 5752
X2HEX 57/.:.5 XFER 4B:30 XGET1 56E2 XGET2 5719
XGET22 5710 XGET4 57:;:4 X TEMP ~39BE Z80TB 5:39[1
ZAF 5A5B ZAFC 5A6 :~: ZBC 5A5D ZBCC 5A65
ZDE 5A5F ZDEC 5A67 ZHL 5A61 ZHLC 5A69
ZIR 5A73 ZIX 5A/.:.F ZIY 5A71 ZPC 5A6B
Z3P 5A/.:.D

(Note: This listing is not related to the programs on page 11.)

LINK-10

LINK MESSAGE EXAMPLES

First program unit loaded {UNIT -#1)

TMDLYH: LD HL, START
COUNT: ENT

DEC HL
LD A, H
CP CO UNTO
JR NZ, COUNT
LD A,L
CP COUNT I
JR NZ, COUNT
CP COUNT2
JR NZ, COUNT
RET

PEND: ENT
DEFM 'TMDLYH'
DEFB ODH

COUNTl: EQU OOH
COUNTO: EQU SOH

END

Second program unit loaded (UNIT -#2)

TMDLYL: LD HL, START
LOOPl: DEC H

LD A,H
CP COUNT
JR NZ, LOOP
RET

PEND: ENT
DEFM 'TMDLYL'
DEFB ODH

START: EQU lOOOH
COUNT: EQU OOH

END

Third program unit loaded (UNIT -#3)

INPUT: CALL OOlBH
CALL TMDLYL
CALL OOlBH
LD HL, START
CP ODH
JR Z,END
LD (HL), A
INC HL
JR INPUT

END: JP OOOOH
COUNT2: EQU 12

END

LINK-11

Refer to photo on page 9.

"START" X

START is not defined as an address in the

flrst program, but is defined as data in the

second or subsequent program with the

START: EQU statement.

Note:

The EQU statement should be placed

at the beginning of the program unit.

"COUNT2" H

COUNT2 is not defined as data in the first

program, but is defined as data in the third

program with the COUNT2: EQU state­

ment.

"COUNTl" D

COUNT 1 is defined as data (D indicates no

error condition).

"COUNT" X

COUNT is deflned as an address in the

first program while it is simultaneously

defmed as data in the second program.

"PEND" M

PEND is defined as an address in the first

program while it is simultaneously defined

as an address in the second program (dupli­

cated definition).

"TMDLYL" U

TMDL YL is neither defined as an address

nor declared with the ENT directive in any

other external program unit.

ERROR MESSAGES

The error messages issued by the tinker are described in the System Command manual. Here, only error

messages which require particular attention are described.

no memory space

Indicates that the symbol table is full; that is, that there are too many symbols to be cataloged. The

symbol table size is set to approximately 6K bytes b,y the tinker unless specified by the programmer.

It is necessary to specify the TBL$ argument in the LINK command to increase or decrease the

symbol table size.

memory protection

Indicates that the link area is inadequate, that is, that the linked data has reached the symbol table

area located at the end of the link area. In this case, MLINK command is available.

il data

Indicates that the data read from the specified relocatable file has an illegal link format. This condi­

tion may be caused by a hardware read error in the floppy disk drive or by an assembly error in the

sou~ce program.

LINK-12

