UNIVERSAL INTERFACE CARD

Model II1Z-®லIU2
Instruction Manual

SHARP CORPORATION

Introduction

Thank you very much for purchasing Sharp Universal Interface Card.
Read this instruction manual carefully before using the card. We hope you will use it to its fullest potential.

Contents

Page
What is a Universal Interface Card? 1
How to use 1
Specifications 2
Parts Arrangement Pattern 3
Circuit Diagram 4

What is a Universal Interface Card?

This card is a circuit board that is available for 8 bits parallel interface. The card is inserted into any connector of Sharp Extension Unit MZ-80EU which is installed in Sharp Personal Computer MZ-80B, and is used for interface between MZ-80B and your peripheral device. For details of connection, refer to the manual for MZ-80B.
Port address can be set up by a port address selector on the board. However, this card needs some modification - - wiring, soldering, etc. - - to match use.

How to use

(a) On the standard board, there are ICs 7404 N that are mounted in the IC sockets at the output stage of output port. However, ${ }^{* 1}$) these ICs should be changed with the following ICs in response to the load condition.
$7405 N, 7406 N, 7407 N, 7416 N, 7417 N$, etc.
(b) Resistors at input/output stage

At the input/output stage, pull-up, pull-down or terminal resistors can be mounted on the board. ${ }^{2}$) You should mount suitable resistors in response to load conditions.
(c) Input/output terminal connector

The card has a input/output terminal connector. Each pin is numbered as follows. For correspondence between each signal and pins, refer to the circuit diagram.

(d) Port address setting

Port address setting depends on a port address selector (marked with "PS") that consists of multiple switches. The numbers described on the selector correspond to the following address bus respectively.

Switch No.	7	6	5	4	3	2	1
Address bus	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}

The OFF condition of a switch corresponds to logic " 1 ", and the ON condition to logic " 0 ". For example, when setting up a port address to decimal value $(100)_{10}$, the condition of each switch will be as follows.

Switch No.	7	6	5	4	3	2	1
Condition	ON	OFF	OFF	ON	ON	OFF	ON

Because the decimal value $(100)_{10}$ is binary value $(01100100)_{2}$.

$(100)_{10}=$| 10 | 1 | 1 | 0 | 0 | 1 | 0 | $0)_{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\uparrow_{S_{7}}$ | \uparrow | $\mathrm{~S}_{6}$ | $\mathrm{~S}_{5}$ | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{1}$ | \square |

Therefore, the condition of the selector should be as illustrated below.

ON condition

OFF condition
Port address range can be 0 to $255(00 \mathrm{H}$ to FFH$)$. "4) However, you should specify a port address in the range 0 to 127 $\left(0 O_{H}\right.$ to $\left.7 \mathrm{FH}_{\mathrm{H}}\right)$.
(e) Port address

I_{10}	to	I_{17}	(input port)	: even address
I_{20}	to	I_{27}	(input port)	: odd address
O_{10}	to	O_{17}	(output port)	: even address
O_{20}	to	O_{27}	(output port)	: odd address

(f) Control

BASIC.SB-5510 or SB-6510 has the following input/output commands.
INP @PORT, X
This command means that 8 bits data is input from the specified port address "PORT" and then is set to variable X as decimal value (0 to 255).

OUT @PORT, X
This command means that value $X(0$ to 255$)$ is output to the specified port address "PORT" as 8 bits binary value. With executing the above command, the port address code is chan! f to a binary code, which is output to address bus A_{0} to A_{7}.
I/O control can be also available with Z 80 machine language.
*** Notes ***
Incorrect operation may damage the card. Pay special attention to the modifications and handling.
$\left.{ }^{*} 1\right)$ Always insert the ICs in the correct direction when changing other ICs. Reverse insertion damages them.
*2) Do not use unsuitable pull-up, pull-down or terminal resistor.
*3) Do not use two or more interface cards with the same port address at a time. ICs may be broken because of the correspondence of port address.
*4) Port addresses 80_{H} to FFH_{H} will be occupied with Sharp optional peripherals etc.
*5) We assume no responsibility for any trouble which is caused by the universal interface cards altered by the user.

Specifications

(1) Number of ports

Input : 2 ports
Output : 2 ports
(2) Port address setting

Whole address setting possible
(3) Connection with bus line

Bus	Symbols	IC used
Data bus	D_{0} to D_{7}	LSO4N, LS125N
Address bus	A_{0} to A_{7}	LS266N
Control bus	$\overline{\text { IORED }}$	LS266N
	$\overline{R D}$	LS42N
	$\overline{W R}$	LS42N
	RESET	LS04N

Each signal is as per TTL level. The electronical specifications are in accord with those of ICs employed.
(4) Port input

TTL level, non latch system
Signals are input to the data bus via IC LS125 with the same logic. The electronical specifications are in accord with those of IC LS125.
(5) Port output

TTL level, latch system
Signals are output via IC 04 with the same logic.
The electronical specifications are in accord with those of IC 04.
(6) Bus line terminals and ICs used

Refer to the Circuit Diagram.
(7) Operating temperature

0 to $35^{\circ} \mathrm{C}$
(8) Storage temperature
-15 to $60^{\circ} \mathrm{C}$
(9) Power source

DC +5V (supplied from Personal Computer MZ-80B)

Parts arrangement pattern

Circuit diagram

UNIVERSAL I/O CARD

商

