RS-232C INTER FACE (FOR MZ80B, 700, 800)

MODEL MZ-1E24

CONTENTS

1. General 1
2. Features. 1
3. Block diagram 1
4. Hardware description 1
5. Jumper block description 1
6. Port address assignment 2
7. Port rate setup for each channe1 2
8. Connector signal mode 3
9. Troubleshooting 4
10. Use of the diagnostic program. 5
11. Circuit diagram 6
12. Parts list 8

1. General

The MZ-1E24 is an RS-232C interface card which can be used for the MZ-700, MZ-800, and MZ-80B.

2. Features

- Incorporation of dual channe1s permits independent data transmission and reception.
- Ten modes of baud rates can be chosen by the jumper on the card which can be set independently for each channel.
- States of connector output signals to the external device can be assigned to the terminal or modem mode using the jumper.
- The following jumper assignment can be attained using the jumper.

BI mode (MODE I): MZ-8BIO3 compatible.
ST mode (MODE 2): Sharp standard RS-232C mode.

3. Block diagram

4. Hardware description

1) Address decoder

From the CPU is issued an 8-bit output for port assign address. Since four successive ports are used with the MZ-1E24, a successive four port addresses are chosen by assigning the high order 6 bits of the 8 -bit output using the dip switch.
2) Bit rate generator

The MOTOROLA MC1441 CMOS Bit Generator is used with the external 1.8432 MHz crystal oscillator. As ten kinds of baud rates are obtained on the output, the user can select the desired rate.
3) Driver

The SN75188 is used for the line driver. The supply voltages are: $\mathrm{VCC}+=12 \mathrm{~V}$, VCC $-=-12 \mathrm{~V}$.
4) Receiver

The SN75189A is used for the line receiver. It operated under single supply of 5 V .
5) $\mathrm{Z}-80 \mathrm{SIO} / 0$

The Z80 SIO/0 is used for the serial I/O drive.

5. Jumper block description

JB-A1: Selection of BI mode* and ST mode* for the channel A .

JA-B1: Selection of BI mode* and ST mode* for the channel B.

All jumpers in the same jumper block must be set to the same mode.

BI ST BI mode

BI ST
ST mode

Do not make all jumpers connected in otherwise connection.
*BI mode
It is the mode compatible with the MZ-8BIO3.
It has to be set in this mode when operated under the system software (i.e. DISK BASIC) which supports the MZ-8BIO3 to the MZ-80B.
*ST mode
Standard RS-232C compatible mode. It has to be set in this mode when the MZ-800 or the MZ-700 (operated under DISK BASIC).

JB-A2: Selection of the baud rate for the channel A.
JB-B2: Selection of the baud rate for the channel B.
For detail, refer to Section 7.
JB-A3: Selection of the terminal and modem mode for the channel A.
JB-B3: Selection of the terminal and modem mode for the channel B. JB-M : Setting up the RS signal

The RS (Request To Send) signal is set to high by installing a jumper chip on the ON side of jumper block JB-M.

(Factory setting) signal for channel A

Jumper chips should normally be installed in the OFF position.

6. Port address assignment

The $Z-80$ CPU issues an 8 -bit output for the port address. Since four successive ports are used with the MZ-1E24, a successive four port addresses must be selected by assigning the high order 6 bits of the 8-bit address output using the dip switch.

Dip switch number	1	2	3	4	5	6
Address bit	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
Factory setup	ON	ON	OFF	OFF	ON	OFF

Switch position	Logic level
ON	0
OFF	1

The port addresses, therefore, have been set to $\mathrm{BOH}, \mathrm{B} 1 \mathrm{H}, \mathrm{B} 2 \mathrm{H}$, and B 3 H at the factory.

Address bit $A_{7} A_{6} A_{5} A_{4} A_{3} A_{2} A_{1} A_{0}$
Logic level

"x" represent either
0 or 1 .

The address bit Al is trsed-for-selection of the $Z-80$ SIO channel. The address bit $A 0$ is used for selection of the Z-80 SIO command or data.

A_{1}	A_{0}	Choice
0	0	Data, channel A
0	1	Command, channel A
1	0	Data, channel B
1	1	Command, channel B

- The baud rate must coincide with the specification of the software used.

For the MZ-80B, 700 and 800: B0-B3H

7. Port rate setup for each channel

As two channels, A and B, are provided for this card, it is possible to set baud rate independently for each channe1.
The desired baud rate must be chosen out of ten baud rates by making shortpin connection on $J B-A 2$ and $J B-B 2$. The $J B-A 2$ is used for the baud rate assignment of the channel A and the JB-B2 for the channel B.

Short-pin	1	2	3	4	5	6	7	8	9	10
Iocation	75	110	150	300	600	1200	1800	2400	4800	9600
Baud rate	75									

Notes:
Never try to insert more than two short-pins at the same time as it may possibly invite a destruction in the IC.
Proper communication would not be enabled, unless the baud rate is identical at both sides.

8. Connector signal mode

There are two 9-pin connectors used in this card.

Channel A connector
Channe1 B connector

Fig.4-2. Connector pin configuration

Signal assignment on connector pins can be altered by changing jumper block connections, by which the channel can be assigned to either terminal or modem mode.
RS-232C compatible signals are obtained in the terminal and modem mode. That is, binary signals are transferred in the voltage level.

Table 4-3 Channel mode

Mode	Channel	Channel A
Terminal mode	Yes	Yes
Modem mode	Yes	Yes

Table 4-4 shows connector pin assignments in each mode.
For the pin number, refer to Table 4-2.
Table 4-4 Pin description

Connector pin No.	Terminal mode	Modem mode
1	Safety ground \quad FG	Sefety ground FG
2	Transmit data \quad SD	Receive data \quad RD
3	Receive data $\quad \mathrm{RD}$	Transmit data SD
4	$\begin{array}{\|lr\|} \hline \text { Request } \\ \text { to send } \end{array} \quad \text { RS }$	Clear to send
5	$\begin{array}{ll} \begin{array}{l} \text { Clear to } \\ \text { send } \end{array} \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { Request } \\ \text { to send } & \text { RS } \\ \hline \end{array}$
6	Equipment ready	Data set ready DR
7	Data set ready	Equipment ready
8	Signal ground \quad SG	Signal ground SG
9	N.C	N.C

-Signal description

Pin No.	Terminal mode		Modem mode	
1	Safety ground	FG	Safety ground	FG
2	Transmit	SD	Receive data	RD
3	Receive data	RD	Transmit data	S
4	Request to send	RS	N.C	
5	Clear to send	CS	Ready to receive	RR
6	Equipment ready	ER	Device ready	DR
7	Device ready	DR	Equipment ready	ER
8	Signal ground	SG	Signal ground	SG
9	Ready to receive	RR	Clear to send	CS

The following alteration takes place when set to the modem mode.

BI mode

ST mode
$\left\{\begin{array}{l}2 \nLeftarrow 3 \\ 5 \rightleftarrows 9 \\ 6 \nLeftarrow\end{array}\right.$
-It has to be set in the terminal mode when using the acoustic coupler.

- Normally, it is operated in the modem mode when the MZ-IE24 is connected with the RS-232C interface incorporating printer and plotter. However, thorough reading of the instruction manual is required in order to make proper use as there may an exemption.

MZ-1E24

- To make direct connection with the computer without intervention of the modem, the following cable connection is required by operating the one of sides in the terminal mode and the other side in the modem mode.

9. Troubleshooting

The diagnostic program must be used for troubleshooting (see Paragraph 10).

As the diagnostic program consists of the board test and communication test, the diagnostic program must be operated depending on the trouble phenomenon.

- If the board test has not been completed successfully, there may the following possible cause:

1. Check for proper supply of the clock (BUSO).
2. Check for a failure in the dip switch.
3. Failure in the LSO4 or LS266.
4. Failure in the SIO.

- If the communication test has not been completed successfully, make test in the following sequence.

10. Use of the diagnostic program

1. Make the monitor connected with the MZ-800.

2. Insert the diagnostic cassette tape in the MZ-800 and load the diagnostic program.
3. Set the MZ-1E24 to be tested in the following manner:
1) Dip switch Nos.1, 3, 5...ON 2, 4, 6...OFF
2) Set the $J B-A 3$ to the T side, th the JB-B3 to the M side, and the JB-A1, BI to the BI mode.
3) Set both switch of the JB-M to the OFF side.
4) Set the JB-A2, B2 to the 1200 mode.
4. Mount the MZ-1E24 to the slot of the MZ-800, and connect the test cable.
5. Enter A 8 H , which has been already set, for the port address as prompted on the monitor screen.
6. Push the space bar to get the port address on display. The following message will appear if entered correctly.

$$
\text { PORT NO }=\mathrm{AB}
$$

7. Turn the dip switches, 2, 4, and 6, to the ON side; and $1,3,5$ to the OFF side ($=54 \mathrm{H}$). Push the (CR key. The following message will appear if entered correctly.

$$
\text { PORT NO }=57
$$

To perform the communication test, set the dip switches, 5,2 , and 1 , to the ON side; and $6,4,3$ to the OFF side $(=80 H)$. Push the CR key.

Then, the port No. $=$ B3, F7 is outputted.
8. Next, push the space bar. The following message will appear if entered correctly.
A TO B OK , B TO A OK

It will be in a failure if only either side is on display with the control waiting for a command entry.
9. The test has been successful up to Step 8, push the space bar to return to the port test. After changing to the ST mode, repeat the communication test. Also, test the channel A in the M mode and the channel B in the T mode.

- Baud rate test

Apply the universal conter probe to the JB-A2, B2. Check if the following frequency is observed.

9600	153.6 K	(Only three
4800	76.8 K	digits are
2400	38.4 K	effective.)
1800	28.8 K	
1200	19.2 K	
600	9600	
300	4800	
150	2400	
110	1760	
75	1200	

- Signal level test

During the communication test, apply the probe to the $S D$ signal jumper block of the JB-A3 and check if $\pm 12 \mathrm{~V}$ is observed.

- JB-M tests

Apply the probe to the RS signal jumper block of the JB-A3. Check if RS is stable at +12 V when the $\mathrm{JB}-\mathrm{M}$ is ON.

Parts code	Description	Price rank
UKŌG-1038ACZZ	Diagnostic cassette tape	BB
UKŌGG1035ACZZ	Test cable	BK

II. Circuit diagram

12. Parts list

(1) Electronic parts

2 Packing \& Others

NO.	PARTS CODE	PRICE	NEW MARK	PART	DESCRIPTION
1	SPAKA1122ACZZ	A H		D	Packing cushion
2	SPAKC 1657 ACZZ	AM	N	D	Packing case
3	SSAKA0302CCZZ	AA		D	Vinyl bag (150×200 ilini)
4	TSELF 1002 ACZZ	AA		D	Label
5	LANGT1049ACZZ	AE		C	Angle for PWB
6	TiNSE1302ACZZ	A Y	N	D	Instruction book
7	XBPSM30P10K00	AA		C	Screw ($3 \times 10 \mathrm{~K}$)
8	XNESD30-24000	A A		C	Nut (3NS)
	-				
		-			

SHARP

