&%l&i&iﬁ*k&@i& £

&
&
&
&
&

B A :”r‘

CHAPTER 4
SAMPLE PROGRAMS

BB DSBS IR RBNG

e)

Let us prepare a program which draws squares which get bigger and bigger as they approach. We want
a small square drawn at the upper left corner of the screen to appear as if it were approaching us. This can
be accomplished by drawing squares with sides of increasing length one over another with a slight

displacement.

MAIN SUB-ROUTINE
DSQR
(display square)

START

o
Set start address on | Move cursor Draw right side
screen and initialize |to home
ide length to mini-
side leng ce1 }
mum
— i
i Draw bottom side
The photo above shows a square which Call DSOR to draw l
H < hi f square
approaches us as it grows bigger one side of squa -
apparently app & &8 (side length = C) [
and bigger.
g8 Draw left side

RETURN

l

Set up ume

DE - 2000
delay count

CALL GETKY

NO

DE~DF -

Monitor

96

#% SHARF 780 ASSEMBLER

0001 0000
000Z: Q000
Q003: 0000
0004 OO0OO
0095t 0000
00062 0000
0007 0000
O0O0g: 0000
000%: 0Ong
OOLo: O00n
Gorty 0000
QOLZY 0000
00123 0000
0014 0000
OC19T 0002
OCLAE: 0004
0017 0008
001 0007
0019 000C

D20 OO0OF
2t 0011
0014

0014
0o1o
O01A
GOLE
onyn

(002
003231 Q02B

0034 0020
00395)

0031
0024
0034
0074
0041: 0034
0042 0026
0043 0037
0044 OOZB
0045: OO0O32D
QO4L: 0072
0047: 00490
00428 0042
004%7: 0045
0050 0047
0051t 0044
0052t 004C
3053: 004F
154 0051
55: 0052
0nS&: 0054
00S7: 0054
005 O0ER
O0S%?: O0SB
0040t OOSD

(OOEO)
(OOCE}
(00FD)
(onnn)
(O0CR)
Qoo
(000
(COL1B)
(0012)

119500
cO8C00
OEO1]
41
COE00
£B8200
TELT
L0100
EIS WY
01200
Or

79
FEOD
20E9
110070
1B
LD1IROD
FEZ!
CAZ100
7A

B3
20F3
12CF
£30000

3EEQ
CD1200
1OF%
2ECE
41
1302
JEFD
C01Z00
3E11
CD1Z00
3E14
CD1200
10EF
FEDD
41
1802
JEED
C01200
3E14
C01z00

11-018A V1.0A

PAGE 01

5 AFPROACHING SQUARE

MNTR1:

€SB ROUTINE

DSORO:

DSQR:

DSGRL:

OSQRZ:

EQU
EQU
EOU
EQ1
EQu
B
£04
EGY
EOL

Lo
CALL
LD
LD
CALL
CALL
Lo
CALL
Lo
CALL
INC
Lo
[
IR
Lo
nec
CALL
TF
JF
Lo
OR
JR
JH
JP

Lo
CALL
DJINZ
LD
LD
JR
Lo
CALL
LD
CALL
LD
CALL
DJINZ
Lo
LD
JR
Lo
CALL
LD
CALL

EOH
CEH
FOH
DDH
COH
DOH
OOOOH
OOU1IBH
OOLZH

DE, ISP
CPRNT
ot

By C
DEOR
TMDLY
A 12H
PRNT
ArtiH
FRNT

1z
NZ:2DG1I
DE2000H
GE
GETKY
e

I MNTRY
AsD

E
NZ)»320562
Z0OGO
MNTR

A CHR1
FRNT
LeQRO
Ay CHRZ
B, C

+4

A CHR3
FRNT
As1lH
FRNT
Ar14H
FRNT
DSeRt
Ay CHR 4
B:C

+4

A CHR1
FRNT
Ar14H
PRNT

97

{
i
I
i

! Symbo! | Character
CHR1
i Defines graphic CHRz
characters for CHR3
drawing squares. CHR4

i P ¢

| CHRS
T Detines monizor ; CHR»

{h][ﬂ BB880

subroutne addresses

Clears screen and positions cursor at initial
position
Derermines side length of square to be

i drawn first

Draws one square whose side length s

i specified in C, then determines next position
i after a delay

—/
!

.

Increments C (which contains the side
length). Exits this loop when C reaches 13.

Gets character with delay

Returns to momtor if " !''' is entered:
otherwise, returns o beginmng of the
program

Draws top side of square.

"7 Draws nght side.

"1 Draws bottom side.

SHARF 780 ASSEMBLER

0061
0062
0063
0Ota:
0065
[Py
00471
00681
0069
0070
0071
0072
0073:
0074
N075:
0076
0077:
Q072
0077:
008D
onel:
00RZ:
0083
0084
008%:
0ngs:
0087
008e:
coe9:
0090
0091
0092t
0093:
0094:
0095
0094
0097:

0040
00b2
0065
00e7
004%
COLA
00LC
00LE
0071
0072
0074
0078
007R
0070
0N7F
00e2
0083
ONE3
0084
0087
00382
onee
0CRB
QORC
0o8C
[elnl3
00€D
00eE
O08F
0092
00973
O0nes
0095
0094
0097
cO9R
0039

3E14
co1200
10EF
3ECD
41
1802
3EFD
cDp1200
2EL12
cDtZ00
3E14
CDL200
10EF
ZEDO
£D1200
£

110020
1B

7A

B2
20FB
c9

12-018A

DSAR3:

V1i.0A

LD
CALL
DJINZ
LD
LD
JR
LD
CALL
LD .
CALL
Lo
CALL
DJNZ
Lo
caLL
RET

Lo
DEC
Lo

FET

DEFR
DEFB
DEFR
LEFB
END

PAGE 02

A 14H
FRNT
DSOR2
Ay CHRS
B:C

+4

A+ THR3
PRNT
Av1ZH
FRNT

A 14H
FRNT
DSaR?2
A CHRA
FRNT

DE»2Z00O0H
DE

A'D

E

NZ,-%

A (DE)

PRNT
vE

CPRNT

22
17
12
0OH

|
|

(IS R S

I [T

Draws left side and returns.

Loads repeat (2000H) into DE

register pair.

count

Prints message designated by DE register

pair.

.

Data area

4.2 DISPLAYING BINARY DATA IN HEXADECIMAL REPRESEN

Let us construct a subprogram to display binary data in hexadecimal. The subprogram must display the
contents of the HL register pair as a 4-digit hexadecimal number, the contents of the accumulator as a
2-digit hexad cunal number, and the lower 4 bits of the accumulator as a 1-digit hexadecimal number. The
subprogram must also place a space before the displayed number.

The subprogram has .1x entry points as follows:

CALL 4HEXO (4hexa data out) . Displays the HL contents.
CALL PS4HX (print space, 4hexa data out) : Displays a space and the HL contents.
CALL 2HEXO (2hexa data out) . Dispalys the Acc. contents.
CALL PS2HX (print space, 2hexa data out) : Displays a space and the Acc. contents,
CALL 1HEXO (lhexa data out) . Displays the lower 4 bits of Acc.

‘ CALL PSIHX (print space, lhexa data out) : Displays a space and the lower 4 bits of Acc.

The above subprograms are closely related to one another; 4HEXO calls 2HEXO twice and 2HEXO calls

THEXO twice. The program flows are as shown below.

PS4HX PS2HX PSIHX

CALL PRNTS i (Monnor
subroutine)

l CALL PRNTS CALL PRNTS

4HEXO 2HEXO 1HEXO

(START { START START

YES

Ace—H PUSH AF Acc > UAH?
CALL 2HEXO ' Shift Acc. to the
right 4 times [Acc~— Acc+ 30H [Acce—Acc ~ 37H]

Acc—Acc N OFH
CALL 1HEXO I

(Monitor
subroutine)

| CALL PRNT |

RETURN

CALL 2HEXO

Acc—Ace N OFH
CALL 1HEXO
RETURN

99

%

00043
Oans:
0004k
0007
000
0002
00N
DoLL:
o0tz
OOy
0014z
0015
[
001
001
0017
0020

Q0320
00211
0032
0023
0024:
QoS
00234
0027
O3Sy
0029
0080
004t
0042
0043
0044
0045:
[QIRE YR
0047:
0048
00473
0050
00sSt:

0060t
0061t

SHARF 180

0000
0000
0000
D000
0000
0000
0000

oo
0000
0000
0000
0001
0004
0003
OOnsS
0004
0009
QOO0OA
000D
000E
00O0E
D00E
QO0E
000E
OO0E
000E
000F
0012
00173
0013
0ota
001S
0016
0017
0012
QO1A
001D
001E
00z20
0n22
0024
0024
0024
0024
0noz4
0024
0024

oozn
002F
00ZF
0030
0021
00321
a0l
01
004

(0003)
(0002)
{o0oD)

F3
CooCoo
F1

7C
£D1300
70
01300
ce

FsS
coocoo
F1

Fs

Fe
CDOC00
Fi

FEOA
2005
Ce20

ASSEMELER

x % o &

*

12-0124A

LCRTIC:
.CRZ:
LINKEY:
BELL:
FRNTZ:
14 HEXA
CALL
CALL

PSA4HX:

4HEXO:

)

HEXA
CALL
caLL

[0 RO,

n
r
I
=

1 HEXA
CALL
caLL

[T

w
-
I
>

THEXD:

HXTO:

HXTt:

vi.oa FAGE 01t

MACRD SV

RST 2

DEFB 21

ENDH

£ QO3H

EQOU OZH

g0 ODH

g0 OO2EH

ot O00CH

D&aTa 0T (DESTROYED:A®
4HE X1
FSAHY (PRINT <FAlD)

ENT

FLISH AF

TALL PRNTS

FOP AF

ENT

LD A H

CALL 2HEXO

LD AL

CALL 2ZHEXO

RET

DATA CUT (DESTROYED:A)
2HEXQ

FZ2HX

ENT

PUSH AF

CALL FRNTS

FOP AF

ENT

PUSH AF

RRCA .
RRCA

RRCA

RRCA —
AND OFH -
CALL 1HEXOD

FOF AF

AND OFH :
caLt LHEXO]
RET

DATA 0QUT (DESTROYED:A)
THEXO

PZ1HX

ENT

PUSH AF

cALL FRNTS

FOP AF

ENT

CF 0AH

JR NC HXT1

ADD A+ 20H

sve .CRTI1C

RST 2

DEFR .CRYIC

ENDM

RETY

ALD Ay 27H

JR HXTO

END

RRC A —T=a
Acc
Calls 1HEXO twice

lower 4 bits of Acc.

to

display

T71 Adds 37H to convert digits A 1o |
_ their ASCII representations.

1 Calls 2HEXO with Hoand L data i Ace

T Rotates Acc to the right 4 times.

the

— Adds 30H to convert digits 0 to 9 to
their ASCIHI representations.

o

Monitor subroutines PRNTS and PRNT must be defined in another program unit for the above
subroutines to function properly.

100

- 4.3 ENTERING HEXADECIMAL DATA

Let us construct a subprogram to read hexadecimal data from the keyboard. with the cursor to blink

" wiwen prompting tor data. Data 1s 10 be entered as one. two. or four digts, and the cursor s to flash unul
the regquired number ot duts bave been entered. A subprogram is to generate a beeper tone when an :n-
valid code 15 entered. and tie subprogram 1s to return with the Z flag set when a carnage return is enteied.

The subprogram has six entry points as follows:

CALL GET4K (get dhexa data) . Enters a 4-digit hexadecimal number into the HL regster pair.

CALL PSG4K (pnnt space, get 4hexa data) Prints a space. then enters a +-digit hexadecimal number into
the HL register pair.

CALL GET2K (get 2hexa data) . Enters a 2-digit hexadecimal number into Acc.

CALL PSG2K (print space, get 2hexa data) : Prints a space. then enters a 2-digit hexadecimal number into Acc.

CALL GETIK {get lhexadata) . Enters a 1-digit hexadecimal number into the lower 4 bits of Acc.
. CALL PSG1K (pnnt space, get thexadata) : Pnnts a space, then enters a 1-digit Hexadecimal number into

lower 4 bits of Acc.

The above subprograms are related to one another: GET4K calls GET2K twice and GETZK calls
GETIK twice. GETIK also calls monitor subroutine * ??KEY ", which waits for character input while

{lashing the cursor. The flowcharts for these subprograms are as shown below.

PRGIR P8GR PSGIK
START START
|
‘
1,-) <] (Momor . VRN - LTl
HALL PRNTR o e CALL PRNTS |CALL PRNTSH

GETIR
|

| CALL ""KEY

{
|

GETYK

(stakt)
Heant GET2KR| CALL GETIK{| ; |
ICALL GET2K]] ALL GETIK
L_r___J R | ‘
i
. |

|

7 fug —
Shift Acc. 1o the Nae = i

left ¢ times |

. i

fConvers ANCH codef |
\/ so hnan ! i
N\ :
: L= teo : o
1___r____J |
h——-——«——l RETURN

+% SHARP 180 ASSEMPLER 11-01%A V1.0A FAGE 01

000l 0000 . MACRO SVC ;
000Z2: 0000 * F2T ? .
00023 0000 . DEFB et .
0008 Q000 * ENDM .
aN0S: 0000 (0003 ORTIC:E EOU D2H
N00L: D000 (0007) LORDE EOu OLH
D7 0000 (HOOD! JINFEY: E00) O
COOET 0000 (ODTE) FELL: £ OOTEH
0002 0000 (000C) SRHTS:D ETU AL
0110 Q000 PGET 4 CHARACTER(DESTROYED:A, b, L
0011 0000 TDALL FE0AY
NIz 0000 : EXITIHLC--XXX s K :iHEYA
D01z 0000 3
¢o14: 0000 FenaK: ENT
0015t 0000 FS FLISH AF
00lL: 0001 CDOCOO CALL PRNTS
0004 F1 PP AF
0008 GETAK: ENT
0nons CDi1son caLL GETZK T Calis GET2K twice
0on2 g RET z
0009 A7 Lo Hy A
G00A CDISOD CALL CETZH
0000 €13 RET z ‘
NO0E 4F Lo LA -
QOOF C9 RET
0010 i
0010 $ GET 2 CHARACTER(DETTROYED:A
0010 ¢ CALL GET2V
0019 H CALL FSR2K
0010 : EXIT:A<-=XX Y:HEXA
0010 3
0010 PSGZH: ENT
0010 FS FLISH AF
0011 CDOCOO CALL FRNTS
0014 F1i FoP AF
an1s CETIK: ENT "7 Loads 4 buts imto Ace by calling GFTIK,
001S CD2BOO TALL SETLK rotates ACC. 4 Lits 1 the left 1o move data
QC1E (8 RET z into the higner 4 bitsin Acc.. and saves Ay
onts 27 RLTA datainto B
O01A 07 RLTA
001e 07 RLCA
nerc 07 RLCA
Co1Dd €S FUSH BC
COlE 47 Lo By A — :
DO01F CLZBOO CALL GETLK "7 Calls GET!K once more t¢ foad 4 bits into
00z2 2202 1R 2,44 Acc. and merges two digits 1in Acc. by
024 BO oRr B ORing Acc. wath B:INC B 1s used to ruset 7
ooag: 0027 G4 INC B flag.
0049: 0024 C1 £0P B
0050 0027 CY : RET .
0051: 0029 i
0n23a i GET | CHARACTERI(DESTROYED:A:
0028 3 CALL CETIK
0028 H CALL FSGLK
0028 i EXIT:AC--0X X:HEXA
ooze H
0023 PSG1K: ENT .
O 002¢ CDOCOO ALl FRNTS
005°: 0028 CET1r: ENT
0060 0028 3EO01 Lo Ayl 7 Returns i CRis entered
0041: 002D + Ve CINEEY
002D DF . RST 3
D02E 92D * DEFB . INKEY
nO2ZF + ENDM
D0&Z: GOQF FEOQD CF ODH
0062: 0021 Ce RET 2
CNA4:r 0032 FS FUSK AF 7 (hecks whether input data is a hexadecimal
006%: 0033 FE20 cr ‘0’ charactér. 11 §o. CONYErts 1t to dinary anw
0044 0025 3818 IR .Cr6GGG2 loads converted data into the lower 4 bits
0067: 0027 FE2A cP 2AH . of Acc.
094681 003% 3007 JR NC,GGGO
0069: 0038 » SV .CRTIC
003R DF * RET 3
003C 03 LI DEFR .CRT1IC
003D * ENDM

102

++ SHARP 780 ASSEMBLER 1Z-018A Vi.0A PAGE 02
0070: 003D F1t POP AF
0071: 002E D630 sus 20H
0072t 0040 1200 JR G661
0073: 0042 FE4L GGGO: cp ‘A’
0074: 0044 280C JR C/1GGG2
00751 Q04A FE47 [N 47H
0074: 0042 3008 JR NC ./ 0G52
N077: 004A » v LLRTLIC
003A DF + RZT 3
004R 03 * DEFR LCRTIC
ON4r * ENDIM
0078: 0N4LC Fi POF AF
0079¢: 004D D&37 SUB 237H I
0080: 00OAF FEFO 6651 cp FOH T Returns with Z 1lag reset.
0081: 0051 €9 RET .)
00g2: 0052 FI 56G2: FOP AF "7} Generates a beeper tone if an invalid code s
0083: 0053 CDIECO CALL BELL I input
0084: 00%A 18072 JR GETLK _Jl
Q08%: 0N0SS END

The above program uses the following subroutines and monitor functions.

PRNTS 000CH (CALL PRNTS)

* BELL 003EH (CALL BELL)
INKEY ODH (SVC .INKEY)
.CRTIC 03H (SVC .CRTIC)

For this subprogram to be used as a subroutine. the above addresses must e defined in the calling

program.

{Application]
Add a delete function to the above subprogram to make 1t possible to cancel mvalid key eniries

For example, it
3ARY
‘wcre entered during execution of the GET4K subroutine. all that would be required to change churecter

A 10 character B would be to backspace with the DEL key once to delete character A, then to enter

character B. Prepare a subroutine which performs as stated above

103

| . '4.4 DISPLAYING AMEMO

Let us construct a program which uses the hexadecimal data input and output subrpograms described
above to display the contents of a specified memory block. The memory block must be specified in the
same format as the M svmbolic debugger command.

At the beginning of this command. the cursor is to blink to prompt for a command. There are to be two
commands: M and !.

The memory dump is to be started with the M command and control is to be returned to the monitor
by the ! command.

When the program is started with the M command, it is to wait for the starting address (a 4-digit hexa-
decimal number) at which the memory dump is to start. After the starting address is specified. the

program is to wait for the ending address after printing a space. After the ending address is specified.

program is to start the memory dump, then return to the command wait state when the memory dump 1s
completed.

M Aag

EITTEET B

288 £
L

Display ' /" and
at for a command,

Monutor

YES
Input starting

address
NO Subroutine COMPR
Z flag—0
NO C flag—0

Cilae—1

RETURN

104

#* SHARP 780

G000
0000
n0o0n

OO0k
oo

000
anne:
ooy
aott
. OO0O0
9000

OO

0018 0000
001At 0000
0000

0017
001833 000
0004
00ns
£

eled Rl
00Z0:

nozl

0024 0011
002%: 0012
00Z4: OO1A
QO27¢ G012
o012
0019
NO1A
001A
001D
0030: QOILF
0021 0020

O0OZR
002R
on2cC
oozn
nozn
0020
0022
0023
0034
003%

0040
00419 :
0042:

oo
0044 :
004 :

2E01L
*

DF
on

FEZ1
CADQOO
FEAD
220%
COZEOO
18E2
*
DF
0z

CROOOO

23F4

EB

cDoOoO
‘QEE

CRAa0on

£

EB

*

DF

02

CDOOOO
0A0R
7E
CD00O0o
C04a000
2epe
2z
10F 4
1¢€B

ASSEMBLER

x e ox o«

*

17-012A V1.0A

MACRMO
F2T
PEFB
ENDM
LCRTICE ECU
CR2E Ef
JINFEY: EQU
BRELL: el
PRNTZ: EGU DO0OCH
: gD OOO0OH

MNTR

MEMORY GUME

MEMRY: ENT

MEMRO:

MEMRZ: LD

':G0TO MONITOR

SV
RT
DEFE CRZ
ENDM
LD Ay ZFH
Ve
RET 2
DEFE JLRTIC
ENDM
LD Al
.INKEY
3
LINKEY
CF e
JF I/)MNTR
CF ‘M
JR 1147
CALL BELL
JR MEMRY
v LCRTIC
RZT 2
UEFR LCRTIC
ENDM
CALL PaGay
JR 7y MEMRO
£X DE»HL
CALL F2G4t
JR 14+ MEMRO
CALL TOMFR
JR CIMEMRO
EX DE,HL
MEMR 1 : sVC .CR2
RST 3
DEFB .CR2
ENDM
CALL AHEXO
LD B:2
A, (HL)
CALL S2HX
CALL COMPR
JR 7 MEMRO
INC HL
DJINZ MEMRZ
JK MEMR1

105

Displays "'/ after moving to the nent e
and waits for a command

Returns to monitor 1f 15 entered and

*starts the memory dump i M " is entered

I

Returns to the command wait state it an in-
vahd command 1s entered

Input starting and endiny addresses of the
memory block to be dumped

Returns to the command wait state 11 i
starting address s greater than tne endinw

address.

Displays address after moving down to the
next line

Displavs the mumory dump (8 byres en g
line) until the ending address 1s reached

SHARF 180 ASSEMBLER 1Z-018A V1.0A FAGE 02

00442 0040
0047: 0040
0048: 0040
0049 Q040

COMPARE DE'HL(DESTROYED:A)
CALL COMPR
EXIT:DE=HL ZI=1

) v en wm we s ue

0050: 0040 DESHL C=1
0051t 0040
0052 0040 COMFR: ENT
005%: 0040 7C LD ArH "l Returns with Z flag set if DE = HL. and with
00S4: 0041 92 Sp] C flag set if DE > HL.
00SSt 0042 CO RET NZ §
00SET 0043 7D Lo AL i
0044 9% TR E _J
0045 C9 RET
0044 END

106

4.5 WRITING DATA INTO A MEMORY AREA

Let us construct a program to write 2-digit hexadecimal numbers into a memory block, starting at a
specified address. The memory block is to be specified in the same format as with the W command.

At the beginning of this program, the program is to flash the cursor while waiting for command entry.
Memory write is to be started with the W command and control is to be returned to the monitor with the
! command.

When the program is started with the W command, it is to prompt for the starting address (a 4-digit
hexadecimal number) of the memory block at which the memory write is to start. After the starting
address is specified, the program is to display the specified address on a new line and wait for the operator
to enter 2-digit hexadecimal numbers. MEMORY WRITE

START

Data entry is to be terminated with [CR]

gé gg EF 1S 28 81 56

[t vt]
[er rso]

[et]
[oo]
[t vscax |

107

** SHARP 280 ASSEMELER 171-018A Vi.0A PAGE 01

0001: 0000 i MEMORY WRITE
000Z: 00060 3 WiSTART

0003: 0000 H 1:3GOTO MONITOR
0004: 0000 3

000S: 0000 * MACRO SVC
000L: 0000 * RST 2
0007 0000 * DEFE @1
Q0o * ENDM
O0B9: 0000 (00073) LCRTLCE EDU O3H
0010 0000 (0O002) LRI EOU OZH
0000 (000D) JINKEY: EOL ODH
0000 (00ZE) BELL: £quy O0ZEH
0000 (0000) FRNTS: EOQU 00OCH
0000 (C000) MNTR: e 00O0H
0000 WRITE: ENT
0000 * SVC .GR2 T} Displays ' / ' on a new line and waits for
0000 DF * RST 3 command entry
0001 02 * LEFR .CR2
Q002 * ENDM
0017: 0002 ZEZF Lo A ZFH
0018: 000G * Ve LCRTILIC
0004 DF * RST 3
000sS 02 * DEFB .CRTIC
0004 * ENDM
0004 3EO0L Lo Ayt
0008 » Ve . INKEY
* RET 3
* DEFEB . INKEY |
* ENDM
000A FEZ1 cP e "] Returns to the monitor if ' !* is entered
QO0OC CA00D00 JP Ly MNTR and starts the memory write.
0O0OF FES7 [‘W
0011 2805 JR 1147 _J Returns to the beginning of program and
0012 COZEOO WRITEO: CALL BELL sounds a beeper tone if an invalid key is
0024t 0014 1BES JR WRITE :] pressed.
0027 0013 + SVC LORTIC "7 Input the starting address at which memory
o018 OF * R2T 3 write is to start.
001e 0z * DEFHR .CRTIC
001A * ENDM
0028: 001A CLOODO E CALL PSGAK
0029: 001D 20F4 JR L+WRITEO _
0020t O01F 0408 WRITEL: LD B. g 7] Input 8 bytes on a line and continues the
0021 0021 * AN JAR2 memory write while displaying write
0021 DF * RST 2 addresses.
0022 02 * DEFR .CR2 Data entry is terminated with [CR] .
0022 * ENDM
0023 CDOOO0O E CALL 4HEXD
00ZA CDOOOO E WRITE2: CALL FSGZY
0029 28ES . JR Z+WRITEO
¢z 77 LD (HL)Y A
oozC z3 INC HL
002D 10F7 DJINZ WRITE2
0 002F 1GEE JR WRITE?
0039 0021 END -

108

This program references the following monitor and external subroutines:

BELL 003H Monitor subroutine

.CR2 02H A

.CRTIC 03H) Monitor calls

ANKEY ODH :

JHEXO (d4hexa data out) See section 4.2,
PSG2K (print space, get 2hexa data) See section 4.3.
PSG4K (Print space, get 4hexa data) See section 4.3.

[Application]

Construct a machine-language monitor program which executes the W, M, and ! commands described
above, as well as additional execution command G. The G commarnd must input the starting address using
the GET4K subroutine and execute the program (by loading the starting addres's into the program counter
(PC)).

/W X XXX memory write

/M XXXX YYYY memorydump

/G XXXX goto XXXX Load XXXX into program counter.
/! goto monitor Jump to address 0000H.

109

i

@ﬁﬁﬁ@&ﬁ&ﬁ&ﬁ@ﬁﬁﬁﬁ&ﬁﬁﬁ&ﬁ@@&@&ﬁ&ﬁ@ﬁ@ﬁ@ﬁ%@ﬁﬁﬁ&ﬁﬁ@ﬁﬁ

APPENDICES

1 B B IS IS

SRS BBB IR PBIBRBBD

SIS

HBHBBHBRBBBSHEHDEBHBHBDDHRESOSHOLHSHORDROREHDE

1. MONITOR SUBROUTINES

— MZ-800 monitor subroutines —

The following subroutines are used by the RONM Monitor (97-504M). Each subroutine name symboli-
cally represents the function ot the corresponding subrounine. These subroutines can be called from
user programs.

Registers saved arc those whose contents are restored when control is returned to the calling program.
The contents of other registers are changed by execution of the subroutine.

Name and entry point (hex.)i ____Function [Registers savedi
CALL LETNL ' Moves the cursor to the beginning of the next line. All except AF ‘
(0006) Y ‘
CALL PRNTS Displays a space at the cursor position. Al lexcept AF]
(000C) o o ;

CALL PRNTS Displays the character corresponding to the ASCII code All except AF .
(0012) i stored in the ACC at the cursor position. See Appendix J :

for the ASCIH codes. No character is displayed when code
0D (carriage return) or codes 11 to 16 (the cursor control
codes) are entered. but the corresponding function is still
pertormed (a carriage return for 0D and cursor movement
ffor 11 to 16). .

CALL MSG Displays a message, starting at the position of the cursor.
(0015) The starting address of the area in which the message is
stored must be foaded into the DE register before calling . !

this subroutine, and the message must end with a carriage

return code (0D).

The carriage return is not exccuted.

The cursor 1s moved 1t any cursor control codes (11 to 16)

are included in the message.

All registers T

CALL BELL { Brietly sounds tone of la (about 880 Hz). I All except AF
(003E)] I o ; -
CALL MELDY Plays a tune according to the music data stored in the Tal except AF !
(0030} memory area starting at the address in the DE register !
! The music data must be in the same tormat as that for the |
f MUSIC statement of the BASIC, and must end with 0D or ¢
i C8. i
| When the tune is completed, control is returned to the call- i
| ing program with the C flag set to 0. When play is inter- | !
! rupted with the .T,B_R_E,L\l‘d key. Control is returned with the : ‘
I C flag set to 1. ! !
CALL XTEMP ! Sets the music tempo according to the tempo data stored ‘ All registers ‘
(0041) I"in the accumulator (ACC). ‘ i
| ACC « 01 Slowest speed ‘r ’
| ACC <~ 04 Middle speed | \
| ACC ~ 07 Highest speed | f
" Note that the data in the accumulator is not the ASCII l i
 codes for 1 to 7 but the binary codes. |
CALL MSTA Generates a continuous sound of the specified frequency. | BC and DE '
(0044) . The frequency s given by the following equation

freg. =895 KkHz nn'
Here, nn® s a 2-byte number stored i addresses 11AT and

CHIA2 o in T1A2 and n'an T1AT)

112

Name and entry point (hex.)

Function

[Registcrs saved]

CALL MSTP Stops the sound generated with the CALL MSTA I All except AF |
(0047) subroutine. l !
; CALL TIMST Sets and starts the built-in clock. The registers must be set i All except AF |
! (0033) as follows before this routine is cailed. \ \
ACC « 0 (AM), ACC ~ 1 (PM) :
DE +« 4-digit hexadecimal number representing the time
in seconds. .
CALL TIMRD Reads the built-in clock and returns the time as follows. i All except AF
(003B) ACC = 0 (AM), ACC < | (PM) ! and DE
DE + 4-digit hexadecimal number representing the time
in seconds.
CALL BRKEY Checks whether the and [BREAK | keys are both All except AF
(001E) being pressed. The Z flag is set when they are being pressed
; simultaneously; otherwise, it is reset.
| CALL GETL Reads one line of data from the keyboard and stores it in All registers
. (0003) the memory area starting at the address in the DE register.
: This routine stops reading data when the key is pressed, |
‘ then appends a carraige return code (OD) to the end of the |
| data read.
i A maximum of 80 characters (including the carriage return
l code) can be enered in one line.
! Characters keyed in are echoed back to the display. Cursor
; control codes can be included in the line.
‘ When the and keys are pressed simultane-
ously, the BREAK code is stored at the address indicated
! by the DE register and a carriage return code is sotored in
! the following address.
i CALL GETKY Reads a character code (ASCII) from the keyboard. All except AF
! (001B) If no key is pressed, control is returned to the calling pro-

Special key read with

GETKY

gram with 00 set in ACC.

No provision is made to avoid data read errors due to key
bounce, and characters entered are not echoed back to the
display.

When any of the special keys (such as or [CR]) are
pressed, this subroutine returns a code to the ACC which is
different to the corresponding ASCII code as shown below.
Here, display codes are used to address characters stored in
the character generator, and are different from the ASCII
codes.

Special key Code loaded in ACC Display code
DEL 60 Cc7
61 C8
62 c9
64 CB
66 CD
11 Cl
12 c2
13 C3
14 C4
15 CS
16 C6

113

' character), then loads the hexadecimal number in the lower
-4 bits of ACC. The C flag 1< set 10 0 when a4 hexadecimal
number 1s loaded 1in ACC: otherwisc, 1t 1y set 1o 1.

Name and entry point (hex.)] Function]Registers saved
CALL ASC | Loads the ASCII character corresponding to the hex- ' All except AF |
(03DA) | 'adecimal number represented by the lower 4 bits of data in -
. ACC.
CALL HEX | Converts the 8 data bits stored in the ACC into a hex- it All except AF
(03F9) adecimla number (assuming that the data is an ASCII

CALL HLHEX Converts a string of 4 ASCII characters into 2 hexadecimal — All except Al
(0410) . number and loads it in the HL register. The call and return and HL
: conditions are as follows ’
| DE « Starting address of the memory area which con- .
: tains the ASCII character string. i
I (e.g., 37 LT AT s
| CALL HLHEX ‘—DE
. CF=0 HL<-hexadecimal number (e.g.. HL = 31A5y)
" CF=1 The contents of HL are not guarenteed.
CALL 2HEX i Converts a string of 2 ASCII characters into a hexadecimal . All except AF .
(041F) : number and loads it into the ACC. The call and return con- and DE
i ditions are as follows.
: DE « Starting address of the memory area which con-
i tains the ASCII character string.
: (e.g., 37 AT)
CALL 2HEX “DE
CF=0 ACC+hexadecimal number (e.g., ACC=3Ay)
CF=1 The contents of the ACC are not guaranteed. i
CALL 7?KEY Blinks the cursor to prompt for key input. When a key is All except AF
(09B3) pressed, the corresponding display code is loaded into the
ACC and control is returned 1o the calling program. ,
CALL ?ADCN . Converts ASCII codes into display codes. The call and All except AF
(0BB9) return conditions are as follows.
ACC < ASCII code
CALL ?ADCN ; '
ACC « Display code 1
CALL "DACN Converts display codes into ASCII codes. The call and i All except AF
(0BCE) return conditions are as follows. ' ‘
ACC « Display codes : :
CALL 7?DACN i |
ACC ~ ASCII code :
CALL ?BLNK Detects the vertical blanking period. Control is returned to | All registers
(ODA6) the calling program when the vertical blanking period is i
entered. ‘ i
CALL ?DPCT Controls display as follows. All registers
(0DDC)

|
j
1
1

ACC Control ACC Control
i COn | Scrolling Cén | Same as the key. |
! Clu! Same as the S key. 1 C7w | Same as the |DEL|key. |
. C2u ! Same as the | * | key. | C8u | Same as the [INST]key. ‘

C3u | Same as the |~ key. : C9+ | Same as the

C4n | Same as the [-- | key. | ALPHA i key.

CS5u | Same as the ! CDn| Same as the [CR] key.

| [HOME | kev.

CALL ?POINT
(OFB1)

Loads the current cursor location into the HL register. The
return conditions are as follows.
} CALL ?POINT
HL « Cursor location (binary)

All except
AF and HL

114

— MZ-800 monitor call —

Functions of this monitor can be called using their function numbers in the same manner as function

calls.

In the following explanation, two-digit hexadecimal numbers printed in Gothic are the function

numbers and the characters at their right are the function names.

The table below lists the main monitor variables related to the monitor calls.

01

Input registers:

Output registers:

Registers saved:

.CR1
Function:
Input registers:

Output registers:

Registers saved:

‘! r:::i‘:;?: h‘:::;:?r:;l Length in bytes Function
SYSSTA 004D 2 ' Hot start address of the utilities using this monitor.
ERRORP 004F 2 Address of the error handling routine of the utilities using
this monitor
ELMD 1000 1 File mode 1: Object file
2: BASIC text file
! | 3: Source file
. ' | 4: Relocatable file
ELMD1 1001 : 17 | File name (up to 16 characters) and end mark ODH.
ELMD20 1014 ! 2 File size in bytes
ELMD22 1016 i 2 Load address
ELMD24 1018 2 Excrution address |
ZLOG 1042 1 Logical number i
| ZRWX 1043 | File open type 1: Read open i
5 2: Write open
tg TEXTST 1070 2 Starting address of the text area of utilities using this
; monitor.
| POOL 1072 2 Starting address of the work area of this monitor.
: VARST 1074 2 Starting address of the variable area of utilities using this
| monitor. ‘
\ TMPEND 107A ‘ 2 Ending address of the temporary area of utilities using |
X : this monitor. i
i TEMLMT 107E ‘ 2 Ending address of the memory area used by this monitor. |
! FILOUT 1091 \ 1 ! Data is output to the CRT if the value at this address is
| | zero and to the printer if it is 1.
! ! (The device specification is effective for monitor functions
§ &CR, .&IC, .&ICX and .&MSG)
00 .MONOP
Function: Returns to the RAM monitor.

None
None
None

Starts a new line independent of cursor position on a line.
None

None

Primary registers only

1156

02

04

05

06

07

.CR2
Function:
Input registers:

Qutput registers:

Registers saved:

.CRTIC
Function:
Input register:

Qutput registers:

Registers saved:

.CRT1X
Function:

Input register:

Output registers:

Registers saved:

.CRTMS
Function:

Input register:

Output registers:

Registers saved:

.LPTOT
Function:
Input register:

Output registers:
Registers saved: .

.LPT1C

Function:

Input register:

Output registers:

Registers saved:

Starts a new line if the cursor is not at the beginning of a line.
None

None

Primary register pairs only

Outputs a character to the CRT. Control codes are executed.
ACC: = Output data

None

Primary register pairs only

Outputs a character to the CRT. Control codes are displayed in
reverse video.

ACC: = Qutput data

None

Primary register pairs only

Outputs a character string. The end code is 00H. Control codes are
executed. (Same as .CRTIC)

DE: = Pointer position of the character string

None

Primary register pairs only

Outputs a character to the printer without code conversion.
ACC: =Output data

None

Primary register pairs only

Outputs a character to the printer converting its code into that of the
printer used with the MZ computer. The PRINT/P statement of
BASIC uses this function.

ACC: =Output data

None

Primary register pairs only

116

09

0A

0B

0C

&CR

Function:

Input registers:

Output registers:

Registers saved:

&1C
Function:

Input register:

Output registers:

Registers saved:

&HCX
Function:

Input register:

Output registers:

Registers saved:

&MSG

Function:

Input register:

Output registers:

Registers saved:

.GETL
Function:

Input register:
Output register:
Registers saved:

Starts a new line on the CRT or printer according to the value of variable
FILOUT (address 1091). Set the value of variable FILOUT to | to select
the CRT or to 0 to select the printer in advance.

None

None

Primary register pairs only

Outputs a character to the CRT or printer according to the value of
variable FILOUT. Control codes are executed when they are output to
the CRT (same as .CRT1C). When this function outputs a character to
the printer, its function is the same as .LPRIC.

ACC: =Output data

None

Primary register pairs only

Outputs a character to the CRT or printer according to the value of
variable FILOUT. Control codes output to the CRT are displayed in
reverse video (same as CRT1X). When the character is output to the
printer, it is output in the same manner as with the PINT/P statement of
BASIC.

ACC: = Qutput data

None

Primary register pairs only

Outputs a character string to the CRT or printer. The end code is 00H.
The switching condition between the CRT and printer is the same as that
of the .&CRT. This function executes control cedes when it outputs a
character string to the CRT (same as .&CRTIC). When it outputs a
character string to the printer, its function is the same as .LPTIC.

DE: = Pointer position of the character string

None

Primary register pairs only

Inputs one line of data from the keyboard and adds an end code 00H to
the end of the data.

DE: = Starting address of the buffer in which the input data is stored.
CF:=1 when [SHIFT] + [BREAK] are depressed

Primary register pairs except AF

117

0D

OE

OF

10

11

17

INKEY
Function:
Input registers:

Qutput register:
Registers saved:

.BREAK
Function:
Input register:

Qutput registers:

Registers saved:

HALT
Function:

Input registers:

Output registers:

Registers saved:

DI
Function:
Input registers:

Output registers:

Registers saved:

.El
Function:
Input registers:

Output registers:

Registers saved:

.COUNT
Function:

Input register:

Qutput registers:

Registers saved:

Inputs a character from the keyboard.

A: =0 Real time key scan (same as the GET statement of BASIC)

A: =1 Waits for key input blinking the cursor.

A: =FFH Unlike when A: =0, inputs only once if a key is depressed and
held.

A: =MZ ASCH code

Primary register pairs except AF

Detects (SHIFT] + [BREAK].

None

ZF: =1 when + [BREAK] are pressed.
Primary register pairs except AF.

Waits for [SPACE] to be subsequently depressed if it is pressed. If
SHIFT| + [BREAKI are pressed next, this function transfers control

to the address identified by ERRORP..

None

None
Primary register pairs except AF

Stops spooling or music, and inhibits interrupt.
None

None

Primary register Pairs except AF

Starts spooling or enables interrupt.
None

None

Primary register pairs except AF

Counts the number of characters of the specified character string. The
string must end with an end code O0H.

DE: = Pointer position of the chararter string

ACC: = The length of the string

Primary register pairs except AF

118

1B

2E

2F

.ERRX
Function:

Input register:

Qurput registers:

Registers saved:

.DEVNM
Funcuon:
Input registers:

Output registers:

Registers saved:

.DEVFN
Function:
Input register:

Output registers:

Registers saved:

.LUCHK
Function:
Input register:

Output registers:

Registers saved:

.LOPEN
Function:

Input registers:

Output registers:

Registers saved:

Displays an error message.

ACC: = Error code (the same as the error number listed in the error
message table of the OWNER’S MANUAL). When the value of
the 7-th bit of the accumulator is 1, the related device name is
also displaved.

None

Primary register pairs only

Interprets (specifies) thé device name.

DE: = Pointer position of the chararter string whirh indicates the device
name.

B:=The length of the string

HL: = Pointer position next to the end of the device name which has
been interpreted.

DE: =The starting address of the device table

ACC: = Device identification number (unit number)

None

Interprets the device name and file name.

DE: = Pointer position in the device name and file name string.
None

None

Checks whether the logical number is defined.
ACC: = Logical number

ACC: =1 (read opened)

ACC: =2 (write opened)

ACC: =3 (read/write opened)

CF:= 1 (not opened)

Primary registers except AF

Opens files which are not divided into blocks as object files. To execute
this function, the device name and filename must be specified with func-
tion .DEVFN in advance.

None

None

None

119

30

31

32

33

.LOADF
Function:

Input registers:

Qutput registers:

Registers saved:

SAVEF

Function:

Input registers:

Output registers:

Registers saved:

.VRFYF
Function:

Input registers:

Qutput registers:

Registers saved:

.RWOPN
Function:

Input registers:

Qutput registers:

Registers saved:

Loads files which are not divided into blocks such as object files. To ex-
ecute this function, the file must have been opened with functions
.DEVFN and .LOPEN in advance.

HL: = Loading address

None

None

Saves files which are not divided into blocks such as object files. To ex-
ecute this function, the file name must be specified with function
.DEVFN.

DE: = Starting address of the memory area to be saved

ELMD20(1014H): = File size in bytes .
ELMD22(1916H): = Load address

ELMD24(1018H): = Execution address

None

None

Compare the contents of the specified memory area with a file which are
not divided into blocks such as object files. To executes this function,
the file must be opened with .DEVFN and .LOPEN in advance.
None

None

None

Opens to read or write a file which are divided into blocks such as source
files (files in ASCII code). To execute this function, the device name and

file name must be specified with function .DEVFN in advance.

ZRWX (1043H): =1 for read-open

ZRWX: =2 for write-open

None ‘
None

Primary register pairs except AF

120

35

37

38

INMSG
Function:

Input registers:
Output register:

Registers saved:

.PRSTR
Function:

Input registers:

Output registers:

Registers saved:

.CLKL
Function:
Input registers:

Output registers:

Registers saved:

.DIR
Function:

Input registers:

Output registers:

Registers saved:

Inputs one line of data of the file opened which has been opencd with
function call . RWOPN.

DE: = Starting address of the input buffer

B: =Input file size in bytes

CF: =1 when the file end (EOQF) has been detected.

DE, HL

Writes the specified bytes of data (max. 255 characters) into the file
which has been write opened with .RWOPN.

DE: = Starting address of the data to be written.

B: = Data size in bytes

None

Primary register pairs except AF

Closes or kills the files opened.

ACC: = Logical number of the file to be closed or killed
(When ACC: =0, all files opened are closed or killed.)

B: =0 for kil! and B< >0 for close

None

Primary register pairs except AF

Displays or prints out the information concerning files stored on the disk
or the contents of the directory. The device name must be specified with
monitor call .DEVNM in advance.
ACC: =0 Inputs the contents of directory into the directory buffer in
the monitor.
ACC < >0 Outputs the directory in the directory buffer to the device
specified with the value in the ACC.
ACC:=88H To the CRT
ACC:=89H To the printer
Otherwise, the directory is output to the file or device
specified by the logical number set.
None
Primary register pairs except AF

121

3A

3C

43

SETDF
Function:
Input registers:

Output registers:

Registers save:

FINIT

Function:

Input registers:

Output registers:

Registers save:

.ERCVR
Function:

Input registers:

Output registers:

Registers saved:

Sets the default device.

DE: = Starting address of the device table

ACC: = Device identification number (unit number)
These are output registers set by .DEVNM.

None

Primary register pairs only

Initializes the 1/0 handler routine in the monitor (this function is used
by the INIT statement of BASIC). The device name must be specified
with monitor call .DEVNM in advance.

None
None
None

Performs the error recovery operation and stops the motor of the MZ

disk or floppy disk.

None
None
None

122

)

— Examples of use of monitor calls —
In following examples, it is assumed that the SVC macro has been defined.
MACRO SVC
RST 3

DEFB @1 — A function number is assigned to parameter @1.
ENDM

When you create programs using this monitor, please add the program below to those programs at
the top of them.

LD HL, ERADR . Sets the address of the error handling routine of the program.
LD (ERRORP), HL
LD HL, hot-start ; Sets the hot start address of the program.

‘ LD HL, last ; Sets the last address of the program.

LD (TEXTST), HL

LD (POOL), HL

LD (HL), 0

INC (HL)

INC HL

LD (VARST), HL

LD (TMPEND), HL

LD DE, 6000 ; Sets 600H for a floppy disk and 800H for the MZ disk.
ADD HL, DE

LD (MEMLMT), HL

LD SP, HL . Sets HL to the initial value of the stack pointer.

Creates error handling routine ERADR mentioned above as follows

ERADR: OR A

JR Z, break-adr ; Jumps to [SHIFT| + [BREAK] handling routine.
CP 80H

JR Z, break-adr

SVC .ERR ; Displays an error message.

123

Loading or verifying an object file

LD DE, FILE, X
SVC .COUNT
SVC .DEVFN

SVC ..OPEN

LD A, (ELDM)
CP1

JP NZ, error

LD HL, (ELMD22)

Set name of object file to be loaded in DE.

Set length of file name in B and returns.

Interpret (specify) device name and file name.

. Open the file.

Set file mode of file opened in ACC.

Object file?

Jump to error handling routine if not object file.
Set load address in HL.

SVC .LOADF (or SVC .VRFYF) ; Load or verify the file.

FILE. X: DEFM “QD: SAMPLE”

DEFB 0

Saving an object file
LD DE, FILE. X
SVC .COUNT
SVC .DEVFN
LD A, 1
LD (ELMD),A
LD HL, length
[.D(ELMD20), HL
LD HL, loading-adr
LD (ELMD22), HL
LD HL, exer-adr
[.D(ELMD24), HL.
LD DE, save-adr
SVC .SAVEF

; Set the end of the file name to 0.

; Set the name of the file to be saved in DE.
Set the length of the file name in B and returns.

Interpret (specify) the device name and file name.

Set the file mode to the object file mode.

; Set the file length in bytes.

; Set the load address of the file.

;. Set the execution address of the file.

. Save the file.

FILE. X: DEFM “QD:SAMPLE”

DEFB O

. Add 0 to end of tilename.

124

Opening a source file (ASCII file)

LD A, open-mode ; Read-open if the open mode is 1 and write-opens if it is 2.
LD (ZRWX), A

LD A, 3

LD (ELMD), A ; Set the file mode to the source file mode.

LD A, 1
LD (ZLOG), A
LD DE, FILE. X

Set the logical number to 1.

Set the name of the file to be opened in DE.

SVC .COUNT ; Sets the file length in bytes in B.

SVC .DEVFN ; Interpret (specify) the device name and file name.
SVC .RWOPN ; Open the file.

LD A, (ELMD) ; Set the file mode opened in A.

CP3 ; Source file?

JP NZ, error ; Jump to the error handling routine if not source file.
FILE. X : DEFM “‘QD: SAMPLE”
DEFB 0 ; Set the end of the file name to 0.
Add 0 to end of filename.

Inputting one line of source file (ASCII file)

: ; The source file is assumed to be read-opened.
LD DE, buffer-adr : Set the starting address of the input buffer in DE.

SVC .INMSG ; Input one line.

JE C, eof ; Perform the file end processing if CF: =
: ; Set the length of the line read in bytes in B.
(0D at the end of the line is not included.)

Outpyt of a source file (ASCII file)

: ; The source file is assumed to have been opened.
LD DE, save-adr ; Starting address of the memory area to be saved.

LD B, length ; File size in bytes (including 0D at the end of each line).

SVC .PRSTR

Closing source files (ASCII files)

LD A, logiral-number ; Specified file only if the logical number is not zero and all files if it
is zero.

LD B, FFH

SVC .CLKL ; Closes the file(s).

Killing source file
LD A, logical-number

LD B, 0O
SVC.CLKL

Specified file only if the logical number is not zero and all files if it

is zero.

Kill the file(s).

Setting a default device

L.D DE, device-name
2SVC .COUNT
SVC .DEVNM

SVC .SETDF

. Set the pointer position in the default device name in DE.
; Sets the length of the device name in B and returns.
Interpret (specify) the device name.

. Set the device specified by the value in ACC 1o the current device.

Display or Print out of directory

LD DE, device name

SVC .COUNT

SVC .DEVNM
LDB, A

XOR A

SVC .DIR

LDA,B

LD A, 88H (or 89H)
SVC .DIR

. Set the pointer position of the device name whose directory is to .
be displayed or printed out in DE.
Set the length of the device name in B and returns.

Interpret (specify) the device name.

Read the directory into the directory buffer in the monitor.

Output the directory to the CRT if the contents of ACC is 88H or

to the printer if it is 89H.

Initialization of device (used by INIT statement of BASIC)

LD DE, device-name
SVC .COUNT

SVC .DEVNM

SVC .FINIT

: Set the pointer position for the device name 1o be initialized in DE.
. Set the length of the device name in B and returns.

. Interpret (specify) the device name.

. Initialize the device.

2. MAKING BACKUP COPY OF THE MZ-800 SYSTEM PROGRAM

It is possible that you may accidentally damage the tape which contains the SYSTEM PROGRAM.
When this happens, you cannot use the computer. To avoid this, make a copy of the SYSTEM
PROGRAM. After making the backup copy. store the original tape in a safe place and use the backup
copy for daily use.

Backup procedurcs are as follows.

1) Prepare a new cassette tape.

2) Turn on the MZ-800 and press the key to start the monitor.

3) Load the tape which contains the SYSTEM PROGRAM into the data recorder, then enter the
following monitor command.

. * GE807

4) When *“ { PLAY” is displayed, press the "PLAY | button of the data recorder to read the
SYSTEM PROGRAM into memory.

5) When the prompt (*) appears, replace the tape with the new one and enter the following

monitor command.

* GESOA

6) When ‘“ § RECORD.PLAY?” is displayed, press the LBTQ@DJ button of the data recorder to
write the SYSTEM PROGRAM to the new tape.

7) When the prompt (*) appears, rewind the tape. Then, enter the following monitor command.
* GE8OD

8) When ‘“ 1 PLAY”’ is displayed, press the @TY; button to verify the tape contents.

9) When the message ‘“‘CHECK SUM ER.” is displayed, repeat steps 3 to 8.

When the message ‘‘OK.”’ is displayed, copying is completed.

127

COPYING OF MZ-700 SYSTEM PROGRAM

Please follow the procedure below mentioned to copy the SYSTEM PROGRAM tape.

1) Power on MZ-700 (—monitor state)

2) Partial memory should be moditied by the use of monitor command M (memory correction) as
follows:

*NCHFOO

CFoo oD CHie (D
Crol1 27 CF17 21
CF02 00 CF18 00
CFO03 38 CH19 38
CFo4 03 CFla 03
CF05 cD CFiB CD
CF06 2A CFIC 24
CF07 00 CF1D 00
CF08 DA CFIE (3
CF09 FE CFIF 08
CFOA 00 CF20 CF
CFOB c3

CFOC AD

CFOD 00

CFOE D

CFOF 27

CF10 00

CFl11 38

CFl12 k5

CF13 C3

Cri4 CB

CF135 OoF

"SHIFT + _BREAK_ to be keved in.
NOTE: The content of memory from CF00 to CF1S may not always be as above mentioned.

()

The cassette to be read (copyed from) should be set to the tape recorder.

4) Key in the monitor command J (Jump) As follows:

* JCF00 [CR] .

4 PLAY
NOTE: If a button of the tape recorder is still pushed on play indication will appear.

S

=

Confirming the ** 1 PLAY" indication above mentioned, push - PLAY button and load the con-
tent of SYSTEM PROGRAM tape. On this octasion, no indication like FILE NAME, etc. will be
shown. When ERROR occured, please restart from the item 1) again.

Set a new cassette to which the SYSTEM PROGRAM should be written into the recorder and ex-

ecute VRE& ND; .

6

128

.

7

8

9)

10)

1
[

13)

14)

15)

Key in as follows:

* ICF16 [CR]

4_ RECORD. PLAY
STOP ' button should be pushed betorehand.

Push *}Eék‘a}il‘)—f button. The copy will start and the following indication will appear:
WRITING MZ-1Z018C

On the occasion of MZ-711, item 9) should be effectuated after setting the external tape recorder in
recording state.

After the sound ‘‘Pit Pit”’, the copy will be terminated.

The monitor state will be recovered by pushing the rear RESET SW.

Rewind the tape and push F_Qia button.

Key in as follows:

* JCFOE [CR
4 PLAY

Push ;EéY button of the recorder and the “VERIFY”’ function will be executed. When suc-
cessful verified, the indication of *‘OK!’’ will appear though no other indication like FILE NAME
etc. will appear. When error occured, please restart from the item 4).

Please make sure to enable the write protection of the cassette by removing the nail.

129

CODE TABLES

— ASCI code table — *

MSD is an abbreviation for most significant digit, and represents the upper 4 bits of each code. LSD is
an abbreviation for least significant digit. and represents the lower 4 bits of each code. Codes 11 to 16y,
are cursor control codes. For example. executing CALL PRINT (a monitor subrountine) with 15 load-
¢ed into the ACC returns the cursor to the home position. (m is not displayved.)

MSD | O 1 2 3 4 5 6 7 8 9 A B C D E F
LSD 0000{0001]0010{0011!0100{0101{0110{0111/1000{1001{1010{1011 1100 1101{1110{1111
0 0000
1 0001
2 0010
3 0011 '“
4 0100 :
s otot - J
. |
6 ouo %ng =5 j_x
1o @5 SE=0o1"To
s e | (BHXOZNho I E™T4
o o | IV WNZZKAY mk]
A ’2*“’;%@Q£?333$D
B 101}
C 1100

D 1101 |CR

£ e TONTARZ2 R A

Fomn 2ozl c iNEBD T

130

.

— Display code table —

The display codes are used to address character patterns stored in the character generator. These
codes must be transferred to video-RAM 1o display characters.

Monitor subroutines PRNT (0012y) and MSG (00154) convert ASCI!I codes into display codes and
transfer them to the V-RAM location indicated for the cursor.

Codes Cly to Céy are for controlling the cursor.

[~ MsD o -1 : 2 3 .04 5 6 7 8 .9Y.,A . B|C.D
\\ i - |

|
]

LSD T~ 0000~0001t001030011?010010101fono‘omi1000&001%10105101151100111m‘1io 11F11
0 0000 SPEEjIIj{:: I_D_EEt . BP
$1MIE§IDSEIDEE§EE I
»oo0 IBR2ZUEUND "Cbo rINBRE I
s CSEOMYED S EOR=EA™
v BTAS@IESd S UBER
s [EUSTeensDe v ~NEFZL

A BB L | 1 B 8P G 58

|

son FVEZTAVEZf VBUIEEX S
ron GWTLeS PNEwWwID 2w EFE
co0 HXBE 0T CBRXANHERG
> v TMEIZNDDOYSLUE UK &
. roro EmO>F=7]ZE0x3K3

s KEEAZ2HMEDKEITL K -
cono TEOONEROMLZE T HAF
‘omeEZjEEXJE@EEXZEE
e o NBLCOATP=an A~ LS
Foon 0XL AT FESA 0N CwEE

131

