SHARP SERVICE MANUAL

GP I/O INTERFASE

MODEL MZ-1E02

CONTENTS

1. WHAT IS A GP I/O INTER FACE? 1
2. SPECIFICATIONS 1
3. DATA INPUT/OUTPUT FORMAT 1
4. INPUT/OUTPUT PINS 2
5. SIGNAL TIMING IN AUTOMATIC HANDSHAKING MODE 2
6. CONNECTION OF PERIPHERAL DEVICES 3
7. PROGRAMMING 3
8. ERROR CODE TABLE 9
9. INPUT CODE TABLE 9
10. MZ-1E02 CONTACT SIGNAL TABLE 9
11. SETUP OF THE DIP SWITCH 10
12. MZ-1E02 (GPIO) TEST PROCEDURE 10
13. MZ-1E02 SCHEMATIC DIAGRAM 11
14. MZ-1E02 COMPONENT LOCATION 12
15. PARTS LIST 13
\qquad

勺y

1. WHAT IS A GP I/O INTERFACE?

The General Purpose Input/Output Interface (GP I/O) is designed for connecting general low-speed peripheral units (e.g. measuring instruments, printers, $X-Y$ plotters, etc.) and providing information exchange between the main computer unit and peripheral devices in a parallel I/O mode.
However, there are many different standards and features in parallel interfaces, and they do not always provide satisfactory information exchange for units having parallel interfaces.
It is requested that the user fully understand this instruction manual and specifications of the peripheral units before using this I/O interface.
Sharp cannot provide either hardware or software support for special customer applications. Moreover, Sharp cannot in any way be responsible for damages that arise as a result of customer misuse.
However, this instruction manual describes information necessary for exchanging information between the main computer unit and peripheral units in so far as is possible.

2. SPECIFICATIONS

$\begin{array}{ll}\text { Model: } & \text { MZ-1EO2 } \\ \text { Input/output mode: } & \begin{array}{l}\text { Marallel input/output mode } \\ \text { Perial) }\end{array} \\ \text { (byte }\end{array}$
Note: One main computer unit can accomodate up to two interface units (i.e. two channels).
The interface unit is mounted in slot $1,2,3$ or 4 of MZ1 U02 Option Expansion Unit taht mounted in the Model-3500 Series Business Computer Main Unit (for two units combinations of slots 1 and 3 or slots 2 and 4 are not allowed). The channel number is determined by the slot number of the interface unit:

Slot 1 or $3 \ldots$. Channel number: 0
Siot 2 or 4 Channel number: 1
Two interface units may be mounted in any of four combinations:

Combina- tion	Slot 1	Slot 2	Slot 3	Slot 4
1	Channel 0	Channel 1	x	x
2	Channel 0	x	x	Channel 1
3	x	Channel 1	Channel 0	x
4	x	x	Channel 0	Channel 1

3. DATA INPUT/OUTPUT FORMAT

The input/output format for data and control signals including positive/negative logic, code length (8 -bit/7-bit code), and parity mode (even parity/odd parity/no parity) should be set up in accordance with the input/output format of the peripheral unit to be connected. The method of setting the format will be described in Part VII, Programming, p. 15.

1. 8-BIT CODE AND 7-BIT CODE

8 -bit code uses eight bits (eight pins) to express data and the 7 -bit code uses seven bits (seven pins) to express data. Either 8 -bit or 7 -bit code can be set for this I/O interface. This interface unit has eight pins for each data input and output, and setup of the 7 -bit code permits the use of the remaining bit (one pin) as a parity bit, as will be described below.

2. PARITY CHECK

A parity bit can be added to 7-bit data so as to provide a parity check of the data. An even parity check verifies that the total number of 1 (logical " 1 ") bits of data and the parity bit is an even number, and an odd parity check verifies that the total number of 1 bits is an odd number. This I/O interface can be set to either an even parity check, odd parity check or no parity check when the 7 -bit code is used.

3. AUTOMATIC HANDSHAKING MODE

Automatic handshaking is one of the data transmission modes, and it generally transfers data automatically in the following procedures. Although automatic handshaking is a basic feature of this I/O interface, manual mode can also be selected.

Data transmission in the automatic handshaking mode (data output).

Data input is handled similarly.

4. POSITIVE LOGIC AND NEGATIVE LOGIC

This 1/O interface can be set for positive logic or negative logic independently for input data, output data, input control signals, and output control signals. The logical mode of output control signals is set by the DIP switch on the interface PC board and the logical mode of other signals is set using a command word (GSET command). For further details, see Part VL, Programming, p. 1.5 and Appendix 4, Setup of the DIP switch, p. A-5.

4. INPUTTOUTPUT PINS

1. INPUT PINS

This $1 / 0$ interface has 12 input pins, eight for data and four for control signals.
The 12 input pins correspond to signals i1 through 112 . Signals 11 to 18 are data signals and 19 to 112 are control signals. These signals have the following magnitudes (weights):

1. $11,19 \ldots \ldots .2^{0}$
$212110 \ldots 2^{1}$
2. $13,111 \ldots . .2^{2}$
3. $14,112 \ldots . .2^{3}$
4. $15 \ldots \ldots . . .2^{4}$
5. $16 \ldots \ldots \ldots .2^{5}$
6. $17 \ldots2^{6}$
7. $18 \ldots \ldots \ldots .2^{7}$ or used as a parity bit or not used.
8. OUTPUT PINS

This I/O interface has 12 output pins, eight for data and four for control signals.
The 12 output pins correspond to signals 01 through 012.
These signals have the following magnitudes (weights):

1. $01,09 \ldots . . .2^{0}$
2. $02,010 \ldots . .2^{1}$
3. $03,011 \ldots . .2^{2}$
4. $04,012 \ldots . .2^{3}$
5. $05 \ldots \ldots . .2^{4}$
6. O6 2^{5}
7. 07 2^{6}
8. $\mathrm{O} \quad \ldots \ldots \ldots 2^{7}$ or used as a parity bit or not used. After power has been switched on, signals O 1 to O 8 are ON (high level) and signals 09 to 012 may be ON (high level) or OFF (low level) as set by the DIP switch on the interface PC board. For further details, see Appendix 4, Setup of the DIP switch, p. A-5.

3. ELECTRICAL CHARACTERISTICS OF INPUT/OUTPUT PINS

1) Output signals

ON (high) : $>2.4 \mathrm{~V} \quad 0.25 \mathrm{~mA}$
OFF (low) : $<0.5 \mathrm{~V} 48 \mathrm{~mA}$
2) Input signals

ON (high) : $2.0 \sim 5.25 \mathrm{~V}$
OFF (low) : $-0.5 \sim 0.5 \mathrm{~V}$
Maximum input voltage : 5.25 V

5. SIGNAL TIMING IN AUTOMATIC HANDSHAKING MODE

1. SIGNAL TIMING FOR DATA INPUT

For data input in the automatic handshaking mode, signal lines 11 to 18 are used for input data, 1.10 is used for the STROBE signal in data input and 010 is used for the ACKNOWLEDGE signal which indicates that the interface unit (MZ-1E02) has received data.
The following illustrates the timing of signals, assuming that signals on lines 110 and 010 are in a positive logic system.

The ACKNOWLEDGE signal on signal line 010 can be replaced with the READY, $\overline{R E Q U E S T}$ TO SEND (transmission request) or the BUSY signal.
2. SIGNAL TIMING FOR DATA OUTPUT

For data output in the automatic handshaking mode, signal lines O 1 to O 8 are used for output data, O 9 is used for the STROBE signal and 19 is used for the ACKNOWLEDGE signal which indicates that the peripheral unit has received data. The following illustrates the timing of signals, assuming that signals on lines 09 and 19 are in a negative logic system.

The ACKNOWLEDGE signal on line 19 can be replaced with the READY, REQUEST TO SEND (transmission request) or the $\overline{B U S Y}$ signal,
As described above in aautomatic handshaking, signal lines 11 to 18 are used for data input and 110 and 010 are used for control signals during data input. Signal lines O 1 to O are used for data output and 09 and 19 are used for control signals. input lines 111 and 112 and output lines 011 and 012 are not used in the automatic handshaking mode and these lines can be used arbitrarily. The following shows some examples of signals to be transmitted on these four lines. Also refer to the GBIT command, p. 30 .

Signal line	Example of signal
191,112	ERROR signal, WARNING signal, PAPER END signal, ALARM signāal, FĀŪLT signal, WAIT signal, etc.
	MACHINE SELECT signal, REMOTE POW- ER-ON signal, INITIAL RESET signal, FAULT RESET signal, etc.

Note: If data input or output does not operate satisfactorily in the automatic handshaking mode and the system hangs up in the wait state (e.g., the system waits for the STROBE signal in data input or the ACKNOWLEDGE signal in data output), the system can be released from this state by pressing the HALT button.

6. CONNECTION OF PERIPHERAL DEVICES

1. PERIPHERAL DEVICES THAT CAN BE CONNECTED. General low-speed peripheral devices (e.g., measuring instruments, printers, X-Y plotters, etc.) having parallel interfaces can be connected. The Model- 3500 Series Business Computer Main Unit can also be connected to another computer having a parallel interface.
Processing of control signals and operation (timing) of the automatic handshaking modes differ for each device and the specifications of each device must be satisfied. For further details, see the following paragraph.

2. PRECAUTIONS FOR CONNECTION

The user should first carefully check the specifiecations of each peripheral device before connection is made.
This paragraph describes general precautions.

1) Electrical characteristics of the input/output pins Confirm that the peripheral device to be connected satisfies the characteristics shown in Part IV, 3, Electrical characteristics of input/output pins, p. 0 .
In particular, make sure to check that the output voltage of the peripheral device does not exceed the maximum input voltage of the MZ-1E02 interface. Excessive signal voltage can cause damage to the interface unit.
2) Automatic handshaking mode Confirm that data is transmitted to the peripheral device in accordance with the flow chart for data transmission, as described in Part III, 3, Automatic handshaking mode, p. 8. The timing of the signal on line O 10 at data input and the signal on line O 9 at data output must satisfy the specifications of the peripheral device.
The setup time for the signal on line 110 at data input and the signal on line 19 at data output must be long enough, as specified, to achieve satisfactory data transmission.
3) Manual mode

If data transmission does not operate satisfactorily in the automatic handshaking mode, carry out data transmission in the manual mode where control signals are input and output by the program (GBIT command). Data transmission in the manual mode takes 10 seconds or more, and the timing of each control signal must be considered carefully.
4) Other

When a printer is connected as a peripheral device, set the CR code of the printer to the carriage return (without line feed) function, i.e., turn off the automatic line feed. A CR code and an LF code are output automatically following data output.

3. CONNECTING PROCEDURE

Note) Switch off the power supplies to the Model-3500 Series Business Computer Main Unit and peripheral devices before making connection.

1) Installing the MZ-1E02

Install the MZ-1E02 in one of slots 1, 2, 3 or 4 of MZ1 U02 Expansion Unit that mounted in the Model-3500 Series Business Computer Main Unit. After installation, secure the MZ-1E02 with screws that closed the slot cover.
The interface unit is assigned channel 0 when it is mounted in slot 1 or 3 , or the unit is assigned channel 2 when it is mounted in slot 2 or 4 . (See the following table.)

Slot number	1	2	3	4
Channel number	0	1	0	1

2) Wiring

Solder the each loose wire of optional GP I/O interface cable [MZ-1C19] with a proper connector of peripheral device according to Appendix 3. MZ-1E02 Contact signal table. Connect all GND lines (24 wires) of the cable to the GND pins of the peripheral device.
Extension of the cable must be within 2 meters and sufficient precautions must be taken for noise protection to ensure reliability.
3) Attaching the connector

Connect the interface MZ-1E02 and the peripheral device with the cable [MZ-1C19].
And then fasten it with two screws on the both end sides of the connector.
4) Power-ON

Set the GP I/O interface controlling FDOS Master disk (accessories) in the Mini-Floppy Disk Drive unit (channel-drive number $A 0$) that located on the right hand side of the Model-3500 Series Business Computer Main Unit.
Turn power on the peripheral device (CRT display, etc.), then the Model-3500 Series Business Computer Main Unit.
(The FDOS Master attached with Model-3500 Series Business Computer Main Unit and that of version No. V2.0 are not applicable.)

7. PROGRAMMING

For ease of understanding of the syntax and rules of command words, the syntax notation is defined as follows. This notation is effective only in describing the syntax and rules, and should not be used in actual programs.

Symbol	Meaning
$\left[\begin{array}{ll} 1 & \\ {[} &] \end{array}\right.$	Indicates the separation for selection. The part enclosed in brackets [] can be omitted. When this is omitted, the function is merely invalidated or a different function is validated.
1	The part enclosed in braches $\}$ can be written repeatedly using a comma (,).
)	The aprt enclosed in angles () can be written repeatedly using a semicolon (;).
n	Indicates an iteger. (Example: 10)
S, T	Indicates a character constant. (Example: "NAME")
A	Indicates a numeric variable (including a numeric array variablel. (Example: NO)
AS	Indicates a \$- or @-type character variable (including character array variable). (Example: DAS)
N	Indicates a variable (numeric or character variable) (including an array variable).
X, Y, Z	Indicates a numeric expression.
	Indicates a character string.
	Indicates a flow of syntax.
-	Indicates selection.
$\left[{ }^{-\infty}\right.$	Indicates repetition.
	Indicates omission.

Note 1）In actual operation，ENTER key must be pressed at the end of each program step．（For multiple statement entry，statements must be separated using a colon（：）．）
Note 2）Enter the program with the MZ－1E02 installed．

1．GMODE

This command sets up the input／output channel modes．

The setup modes include the automatic handshaking mode or manual mode for input／output ports，8－bit or 7－bit code for the automatic handshaking mode，and the parity check mode．
Format）GMODE 〔X，〕C，D［，E \rfloor
X ：Channel number（ 0,1 ）
C ：Port

Numeric expression X selects the channel with character string C selecting which port and character string D selecting the mode（automatic handshaking mode／manual mode）． When the automatic handshaking mode is specified by D ， data format can be specified by the character string E ． If $[X$, ］is omitted，channel 0 is set automatically．If E is omitted in the specification of the automatic handshaking mode， 8 －bit data code is set automatically．After power has been switched on，the input and output ports of each chan－ nel are set to the automatic handshaking mode with 8 －bit data code．

Note）For data I／O in the 7－bit ASCII code system，the SI／SO（shift－in／shift－out）state is automatically set to SI by execution of this command．

Example） 10 GMODE＂0＂，＂A＂，＂7E＂
This program specifies the automatic handshaking mode for 7－bit code with even parity check for the output port of channel 0 ．

Addendum） $\mathrm{SI} / \mathrm{SO}$（shift－in／shift－out）
The 7 －bit ASCII code system fias the $\mathrm{SI} / \mathrm{SO}$ state for handl－ ing as much data as an 8 －bit code system does．
The SO code（CHR\＄\＆OE）switches the SI state to the SO state，and the SI code（CHR\＄\＆OF）switches the SO state to the SI state．Accordingly，data in the 7－bit ASCII code system includes SI codes and SO codes．These codes must be taken into consideration in programming when the amount of data is significant．The Sl and SO states are independent for the input and output ports and for each channel．
After power has been switches on，the SI state is auto－ matically set．

2．GSET
This command specifies the logical polarity of input／ output data signals and input control signals．

This command is effective only for channels and ports in the automatic handshaking mode．

Format）GSET 〔X，〕C，D
X ：Channel number $(0,1)$
C：－Fype－ofsignals
ID ．．．．．．．．Input data signals
OD.\ldots. Output data signals
IC ．．．．．．Input control signals

D ：Positive logic／Negative logic

This command specifies the logical polarity of signals on a channel，as indicated respectively by the character strings D and C ，and the expression X ．
The logical polarity of signals can be specified in two ways：
i）Specification for a group of signals（8 data bits or 4 bits）as designated by string C ：
Character string D：Positive logic ．．．．．．．．．．．．＂1＂
Negative logic ．．．．．．．．．．＂＂ 0 ＂
ii）Specification of individual signals as designated by character string C ：
Character string D ：
Example for input control signals：

If $[\mathrm{X}, 〕$ is omitted，the logical polarity for channel 0 is set．
After power has been switched on，positive logic is set for all input／output data signals and input control signals for each channel．

```
Example) 10 GSET "OD","O"
```

This program specifies negative logic for all output data signals（ 8 bits）on channel 0.
Addendum）The logical polarity of the output control signals is set by the DIP switch on the interface PC board．（This command can－ not be used for that purpose．）For de－ tails，see Appendix 4，Setup of the DIP switch，p．A－5．

3. GIN

This command enters data.
The syntax differs in the automatic handshaking mode and manual mode. Format 1 applies to the automatic handshaking mode input command, and Format 2 applies to the manual mode input command.
Format1) GIN X, N, C [, D]
X : Channel number (0,1)
N : Variable for inputting data
C : End code 1
D : End code 2

This command (Format 1) is used in the automatic handshaking mode.
The GIN command inputs data to variable N unitl end codes are read (will be described shortly) as designated by the character strings C and D for a channel as designated by the numeric expression X. The end codes are not input to the variable N .
If the area for variable N overflows, ERROR 205 occurs.
The NULL code has no effect and is not input to the variable. For character strings C and D, only the first character is valid as an end code.

- End code

When one end code is specified (, D is omitted), data is input until the end code as designated by the character string C is met.
Whe two end codes are specified, data is input until one of the end codes as designated by character strings C or D is met. In this case, if the end code as designated by character string C is met, the succeeding statement will be executed next. If the end code as designated by character string D is met, the statement in the subsequent program step will be executed next.

Example) 10 GIN $0, A \$, C H R \$$ \& $7 F, C H R \$$ \&OD:GO TO 10 20 DISP " $A \ddagger=" ; A \$$

This program inputs data to the character variable $A \$$ until the DEL (delete) code (i.e. CHR\$ \& 7F) or CR (carriage return) code (i.e. CHR \& \& OD) is met.
Upon input of the DEL code the statement 'GO TO 10 ' will be executed next, or upon input of the CR code, the statement 'DISP " $\mathrm{A} \$=$ " ; $A \$^{\prime}$ ' in the subsequent program step will be executed next.

Note 1) Null code is invalid to input even in @-type character variables.
Note 2) For input data in negative logic as specified by the GSET command, complementary data (having an inverted polarity) will be input.
Note 3) The data of 253 bytes or less is available to input at a time, more bytes of data input invite error (ERROR 125).
Note 4) If CHR\$ \& 01 through \&1F and CHR\$ \&81 through $\& 9 \mathrm{~F}$ is specified as the end code in the 7 -bit code system, the end code is detected using 7-bit data irrespective of the $\mathrm{SI} / \mathrm{SO}$ state. If CHR \$ \& 20 through \& 7F and CHR\$ \&AO through \&FF is specified as the end code, the end code is detected using the SI/SO state and 7-bit data.

Format 2) GIN X, E, A
X : Channel number $(0,1)$
E : Type of signals
D Data signals
C Control signals
A: Numeric variable for inputting data

Format 2 of the GIN command is used in manual mode.
The GIN command inputs the logical level (ON or high, and OFF or low) of a signal as designated by the character string E to the numeric variable A as binary data for the channel as designated by the numeric expression X.
Binary data produced by this command will have the magnitude of $1,2,4,8,16,32,64$ or 128 , or any sum of these values depending on the bit position in the ON state (high level), irrespective of the logical polarity specified by the GSET command. Bit positions in the OFF state (low level) give a value of 0 .

- Magnitude of bit positions in the ON state (high level):
11,19 1

12,110 2
13, $111 \ldots$.
14,112 8
15.......................... . . 16
16.......................... . . 32
17.......................... . 64

18 128
The range of magnitude of data signals is 0 to 255 , and that of control signals is 0 to 15.

4. GOUT

This command output data.

Syntax 1 and 2 apply to operation in automatic handshaking mode, and Format 3 applies to operation in manual mode.
Format 1) GOUT $X,\langle Y \quad C\rangle$ 〔;〕
X : Channel number (0,1)
Y: Numeric data to be output
C : Character data to be output

Format 1 of the GOUT command is used in automatic handshaking mode.
The GOUT command outputs numeric data designated by the numeric expression, or literal data designated by the character string C to a channel designated by the numeric expression X . With a semicolon attached at the end of the last numeric expression or literal string, no CR code (CHR\$ \&OD) nor LF code ($\mathrm{CHR} \$$ \& OA) is output following the output of data. Conversely, if a semicolon is omitted at the end of the last numeric expression or literal string, a CR code and an LF code are output automatically following the output of data.

This program outputs literal string (literal constant) " $A B^{\prime} C^{\prime \prime}$ data followed by a CR code and LF code for channel 0 .
Note) For output data in negative logic as specified by the GSET command complementary data (having inverted polarity) will be output. (This rule also applies to Format 2.)

Format 3) GOUT X, E, Y
X : Channel number (0,1)
E : Type of signals
D......... . Data signials
C.......... Control signals

A : Numeric data to be output $1: \cdots$,

Format 3 of the GOUT command is used in the manual mode.
The GOUT command outputs numeric data designated by the numeric expression Y in binary format with the logical polarity of the signals designated by the character string E to a channel designated by the numeric expression X. This command outputs an ON state (high level) for a 0 bit, irrespective of the logical polarity specified by the GSET command. The logical polarity of output control signals' is determined by the DIP switch on the interface PC board (See p. A-5.) When the character string E is set to data signalls, the magnitude of the numeric expression Y must be within the range from 0 to 1.5 If this range is exceeded, ERROR 127 occurs.
No CR code (CHR\$ \&OD) nor LF code (CHR\$ \&OA) is output at the end of the output data.
Note) Use this command for data in the 8-bit code system.
Addendum) The NULL code can be output.
Example) 10 GOUT 0, 0 י",0\%
This program outputs a NULL code for channel 0 .
5. GBIT

This command verifies and sets the logical level of signals.
This command is effective for ports in both automatic handshaking and manual modes. The command has no relation to the logical polarity specified by the GSET command. The logical polarity of the output control signals is determined by the DIP switch on the interface PC board. See Appendix 4, Setup of the DIP switch, p. A- 3.
Format 1) GBIT [$X,{ }^{1}, \mathbf{C}, \mathrm{Y}, \mathrm{A}$
X : Channel number (0,1)
C : Type of signals
ID Input data signals
IC Input control signals
Y : Pin number
$0 ., \ldots . .$. I1, 19
1.......... 12, 110
$2 \ldots \ldots 13,111$
3,.......14, 112
4......... 15
5........... 16
6.......... 17
7.......... 18

A : Numeric variable for inputting data

The GBIT command verifies the logical level of a pin de－ signated by the numeric expression Y for an input signal designated by the character string C for a channel designat－ ed by the numeric expression X ，and assigns＂ 1 ＂to numeric variable A if the state is ON（high level）or assigns＂ 0 ＂to numeric variable A if the state is OFF（low level）．
If $[X$, ］is omitted，a signal on channel 0 is verified．
Example） 10 GBIT ＂IC＂， $2, \mathrm{~A}$
20 IF $A=1$ THEN＂ERR＂
This program checks signal 111 on channel 0 ，and branches the program to line label＂ERR＂if the signal is ON（high level）．

Format 2）GBIT 〔X，〕C，Y，Z
X ：Channel number $(0,1)$
C ：Type of signals
OD ．．．．．．．．Output data signals
OC ．．．．．．．Output control signals
Y ：Pin number
0．．．．．．．．．．01，09
1．．．．．．．．．．02，010
2．．．．．．．．．．O3， 011
3．．．．．．．．．04，012
4．．．．．．．．． 05
5．．．．．．．．．． 06
6．．．．．．．．．． 07
7．．．．．．．．．． 08
Z ：Set of signals
$0 \ldots \ldots \ldots$ OFF（low level）
$1 \ldots \ldots \ldots$ ON（high level）

When the character string C indicates that the signal is an output data signal，this command sets a pin designated by the numeric expression Y to ON （high level）if the magni－ tude of the numeric expression Z is＂ 1 ＂，or sets the pin to OFF（low level）if Z is＂ 0 ＂．
When the character string C indicates that the signal is an output control signal，setup of the DIP switch on the inter－ face board functions inversely．
If $[X$,$] is omitted，a signal on channel 0$ is set．
Example） 10 GBIT＂OC＂，0，1
This program sets signal 09 on channel 0 to ON （high level） if DIP switch 1 on the interface PC board is set to OFF． If the DIP switch 1 is set to ON，the pin is set to OFF（low level）．

6．A SIMPLE PROGRAMMING EXAMPLE

Example 1）
Sample program describing data transfer with automatic handshaking mode using two sets of main unit Model 3500 series．

```
    10 GMODE U,"U", "A", "8"...............Sets the mode (Output port).
    20 AG==' SHARP
    30 GOUT O.AS; ..........................Output character data "SHARP"
```



```
    70 DISP A5;日$
    80 ENL
    10 GTOOE 0, "1","A", "8".................Sets the mode (Input port).
    20 G1N &,A$,CHR$ &FF....................... Input character data.
    30 GMODE O,"O","A","B"...................Sets the mode (Output port)
    85="Madel-350リ
```



```
    60 GOUT O,CHF$ &FF F........................Output ending code "CHR$ &FF".
    70 DISP As;E*
    80 ENL
```

Execution results
＂SHARP Model－3500＂is displayed onto the both of CRT A side and B side．

Cable connecting table
When executing program，use the cable corresponded as follows．

Side A		Side B	
Signal name	Contact No．	Contact No．	Signal name
01	1	25	11
02	3	27	12
03	5	29	13
04	7	31	14
05	9	33	15
06	11	35	16
07	13	37	17
08	15	39	18
09	17	41	19
010	19	43	110
11	25	1	01
12	27	3	02
13	29	5	03
14	31	7	04
15	33	9	05
16	35	11	06
17	37	13	07
18	39	15	OB
19	41	17	09
110	43	19	010

－All GND（ground）contacts must be connected with those of partner．
－Unused contacts are open．

Example 2)

Sample program describing data transfer with manual mode using two sets of main unit Model-3500 series.

Execution results

Result is displayed at A side after calculating at B side the total of two numeric datas which is input through A side.

Cable connècting table
When executing program, use the cable corresponded as follows.

Side A		Side B	
Signal name	Contact No.	Contact No.	Signa! Name
01	1	25	11
02	3	27	12
03	5	29	13
04	7	31	14
O5	9	33	15
06	11	35	16
07	13	37	17
08	15	39	18
012	23	47	112
11	25	1	01
12	27	3	02
13	29	5	03
14	31	7	04
15	33	9	05
16	35	11	06
17	37	13	07
18	39	15	08..
111	45	21	011

- All GND (ground) contacts must be connected with those of partner.
- Unused contacts are open.

Example 3)

Sample program describing data transfer with manual mode using a main unit Model-3500 series and printer [MZ-1P02].

GOCDE O, D, B
20 GUIT 0, "OC",1,1............................. Output control signal 10 ON

50 IF $A=0$ THEN END
60 GOUT $0, " U ", A \ldots$
60 GOUT O."U",A...
(DATA STROBE signal at printer).
 Output numeric data

90 GBIT O,"IG";0,8 …........................... Verify, input cöntrol signal 19.
100 IF $日=1$ THEN 90
110 GO T0 40
200 DATA $29,83,72,65,82,80,10$
210 UATA $321,83,72,65,82,80,10$
220 OATA: $3 D_{1}^{\prime}, 83,72,65,821,80,10$
230 CIATA $31,83,72,65,82.80,110$
240 DATA O Datas to make

Function code designating character
pitch and double width.

Execution results

Executing this program gets the following kinds of character on printer.

Cable connecting table
When executing program, use the cable corresponded as follows.

Main unit side		Printer side	
Signal паme	Contact No.	Contact No.	Signal name
01	1	2	DATA BITt
02	3.	3	DATA BIT2
03	5	4	DATA BIT3
04	7	5	DATA BIT4
05	9	6	DATA BIT5
06	11	7	DATA BIT6
07	13	8	DATA BITY
08	15	$\therefore 9$	DATA BIT8
09	17	1	DATA STROBE
010	19	31	INPUT PRIME
19	41	11	BUSY
110	43	10	$\overline{\text { PCKNOWL. }}$
111	45	12	PAPER END
112	47	13	SELECT

- All GND (ground) contacts must be connected with those of partner,
- Unused contacts are open.

8. ERROR CODE TABLE

Error code number (E R N)	Meaning
(odd number) 121 123	Parity error in data entry. Improper input data in automatic handshaking mode. 125
The data entry variable overflows in automatic handshaking mode. Improper output data in manual mode.	

Note) An erroneous program step indicated by an odd number error code (ERN) can be skipped using the ON ERROR statement.

Error code number (E R N)	Meaning
(even number)	Hardware error. 120 122
124	Improper operand in the command word. Improper setting of the logical polarity, im- proper setting of the pin number, or improper setting of the end code.

For error codes other than those listed above, refer to V. "Error code list" of the MZ-3500 BASIC LANGUAGE MANUAL Appendix.

9. INPUT CODE TABLE

Input data is processed as the following characters or functions in the Model-3500 Business Computer Main Unit.

1. 8-BIT ASCII CODE TABLE

Note 1)
LF : Carriage Return Line Feed
SP : Space
Note 2) Character codes which are left blank in the above table are used for Japanese characters, except for the character code 00.

2. 7-BIT ASCII CODE TABLE

Note 2)

Note 2) Character codes which are left blank in the above table are used for Japanese characters, except for the character code 00 on the SI side.

10. MZ-1E02 CONTACT SIGNAL TABLE

Following table shows the contact and input/output signal of the interface [MZ-1E02] coordinated with the each loose wire of optional GP I/O interface cable [MZ-1C19]. (The cable consists of 50 pcs. of loose wire and they are distincted from each other, with 5 kinds of color and number of colored 2 kinds.)

Contact No.	Sigral name	Wira calar	Mark color	Numatar of marks	Contact Na.	Sigral пете	Wire color	Mark color	Number of marks
1	01	Orange	Hed	1	26	GND	White	Black	3
2	GND	Orange	Black	1	27	12	Yellow	Red	3
3	02	Gray	(1) ${ }^{\text {d }}$	1	28	GNO	Yoliow	Black	3
4	GND	Gray	Black	1	28	13	Pink	Red	3
5	03	White	Red	1	30	GND	Pink	Black	3
6	GND	White	Black	1	31	14	Oranga	Red	4
7	04	Yellow	Hed	1	32	GND	Orango	Elack	4
B	GND	Yeliow	Black	1	33	15	Gray	Red	4
9	05	Pink	Red	1	34	GND	Gray	Black	4
10	GND	Prink	Black	1	35	16	White	Red	4
11	06	Orange	Red	2	36	GND	White	Black	4
12	GND	Orange	Black	2	37	17	Yellow	Red	4
13	07	Gray	Red	2	38	GND	Yellow	Black	4
14	GND	Gray	Black	2	39	IB	Plonk	Red	4
15	08	Whin	Red	2	40	GND	Plork	Black	4
16	GND	Whits	Black	2	41	19	Orange	Fed	Many
17	09	Yellow	Red	2	42	GND	Orange	Black	Many
18	GND	Yellow	Black	2	43	110	Gray	Red	Мапу
19	010	Plok	Red	2	44	GND	Gray	Black	Mbny
20	GND	Plnk	Black	2	45	111	Wwite	fad	Meny
21	011	Orange	Red	,	46	GND	White	Black	Many
22	GND	Orange	Black	,	47	112	Yeliow	Hed	Many
23	012	Gray	Red	3	48	GND	Yellow	Black	Many
24	GND	Gray	Black	3	49	NDt used	Pink	Fed	Many
25	11	White	Red	3	50	GND	Pink	Black	Many

11. SETUP OF THE DIP SWITCH

The DIP switch on the interface PC board is used to establish the state of the output control signals immediately after powen hass been switched on, the logical polarity of the output control signals, etc.

Switch	Signal	Switch position	$\begin{aligned} & \therefore \text { Initial } \\ & \text { state } \end{aligned}$	Logical polarity	Output level in manual mode.	
		OFF	OFF (low level)	Positive " logic	$\begin{aligned} & \text { OFF } \\ & \text { (Iow Ievel) } \end{aligned}$	$\begin{gathered} \text { ON } \\ \text { (high level) } \end{gathered}$
		ON	ON (high level)	Negative logic	$\begin{gathered} \mathrm{ON} \\ \text { (high level) } \end{gathered}$	$\begin{gathered} \text { OFF } \\ \text { (low levei) } \end{gathered}$
	010°	OFF	$\begin{gathered} \text { OFF } \\ \text { (low level) } \end{gathered}$	Positive Iogic	$\begin{gathered} \text { OFF } \\ \text { (low level) } \end{gathered}$	$\begin{aligned} & \text { ON } \\ & \text { Ihigh level) } \end{aligned}$
		ON	$\begin{aligned} & \text { ON } \\ & \text { (high level) } \end{aligned}$	Negative logic	$\begin{gathered} \text { ON } \\ \text { (high level) } \end{gathered}$	$\begin{gathered} \text { OFF } \\ \text { (low level) } \end{gathered}$
1 3 	011	OFF	OFF (Iow lēvèl)	Positive lógic̣	$\begin{gathered} \text { OFF } \\ \text { (low leval) } \end{gathered}$	$\begin{gathered} \text { ON } \\ \text { (high level) } \end{gathered}$
		ON	ON: (high level)	Negativẹ logic	$\begin{gathered} \text { ON } \\ \text { Shigh leveli } \end{gathered}$	$\begin{gathered} \text { OFF } \\ \text { (low leve!) } \end{gathered}$
	012	OFF	$\begin{gathered} \text { OFF } \\ \text { (low level) } \end{gathered}$	Positive Iogic	OFF (low level)	$\begin{aligned} & \text { ON } \\ & \text { (high level) } \end{aligned}$
		ON	$\begin{aligned} & \text { (high level) } \\ & \text { ON } \end{aligned}$	Negative : logic	$\begin{gathered} \text { ON } \\ \text { (high level) } \end{gathered}$	OFF (low level)

* The level of each bit in accordance with Syntax 3 of the GOUT command, or the value of the numeric expression Z in accordance with Syntax 2 of the GBIT command.

12. MZ-1EO2 (GPIO) TEST PROCED URE

Tools required
(1) MZ-3500 Personal Computer
(2) MZ-1E02 (RS232C I/F RWB)
(3) Diagnostic program diskette (UKOG-0143 CSZZ)
(4) Cable(UKO-GG0078CSZZ)

Test procedure

1. Fix the optional slot panel on the back of the MZ-3500.
2. Insert the board to be tested in the slot number 3 or 1 of Channel 0.: And, insert the testing board in the slot number 2 or 4 of Channel 1.
Keep the board to be tested in Channel Q at all times and change the testing board in Channel 1 after each test.

Channel 0 Channel 1
NOTE: Before inserting the board in the slot make sure that all dip switches are in OFF'position. Any dị switch turned ON must be set OFF.
3. Connect boards using the cable (UKOGG0078CSZZ) dedicated for this service.
4. Insert the diagnostic program diskette (UKOG-0143CSZZ) in the MZ-3500 floppy disk drive and turn power on. The test starts automatically after power on.
5. The message as shown in Fig. 2 appears when the test ends normally.
Fig. 2
ig. 2

$$
\text { DIP SWON } \rightarrow \text { (Push Space Key) }
$$

MZ-3500 GP I/O CHECK PROGRAM

Turn all dip switches OFEOf the board to bestested when the above message is displayed, then pushithe SPACEBAR. The test is satisfactory when the following message appears - after depression of the SPACEBAR.

If there is any failure, the bit in failure will be shown on the display.
Example: The message as shown below appears when bits 1 and 2 of the $1 / O$ port is in failure.

Error may also be indicated when the SPACEBAR is pushed after turning all dip switches ON.

(Error message)	Signal
1 bit....... ERROR	\rightarrow line 01 or 11 in failure
$2 \mathrm{bit}$. ERROR	$\rightarrow \quad 02$ or 12 in failure
3 bit......... ERROR	\rightarrow ", 03 or 13 in failure
$4 \mathrm{bit}$. ERROR	$\rightarrow \quad 04$ or 14 in failure
5 bit -	$\rightarrow \ldots$ O5 or 15 in failure
$6 \mathrm{bit} \ldots \ldots . . \mathrm{ERROR}$	\rightarrow - 06 or 16 in failure
$7 \mathrm{bit}$. ERROR	\rightarrow : 07 or 17 in failure
8 bit......... ERROR	\rightarrow O8 or 18 in failure Dip switch
gbit......... ERROR	O 9 or 19 in failure remains ON .
10bit........ ERROR	$\rightarrow 0010$ or 110 in failure
11 bit \cdots...... ERROR	$\rightarrow 011$ or 111 in failure
12bit........ ERROR	" 012 or 112 in failure

NOTE: Be sure to turn power off before accessing of the board.
The even numbers are GND's

CPU Side

B	No.	A
	1	
	2	
GND	3	GND
Vcc	4	VCC
	5	
	6	SYSRES
RD	7	WR
D 0	8	D 1
D2	9	D3
D 4	10	- 5
D 6	11	D 7
A 0	12	A 1
A 2	13	A 3
A 4	14	A 5
A 6	15	A 7

A 8	16	A 9
A10	17	A11
A12	18	
	19	
	20	
TORQ	21	$\overline{M 1}$
	22	$\overline{\text { MREQ }}$
	23	
	24	
	25	
	26	
	27	
ROMX	28	
	29	
GND	30	SLOT

(PARTS SIDE)

Cable Side

No.			
GND	2	01	1
	4	02	3
	6	03	5
	8	0.4	7
	10	0.5	9
	12	$0 \quad 6$	11
	14	07	13
	16	08	15
	18	09	17
	20	$0 \quad 10$	19
	22	O. 11	21
	24	012	23
	26	i 1	25
	28	i 2	27
\dagger	30	i 3	29

		32	i	4	31
		34	i	5	33
		36	i	6	35
		38	i	7	37
		40	i	8	39
		42	i	9	41
		44	i	10	43
		46	i	11	45
		48	i	12	47
GND	50			49	

(PARTS SIDE)

15. PARTS LIST

1. Electronic parts

2. Accessory

NO.	PARTS CODE	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$	DESCRIPTION
1	SPAKA1087ACZZ	AC		D	Packing cushion for master
2.	SPAKA1140ACZZ	A H		D	Packing cushion for 1E03
3	SPAKA1141ACZZ	AA		D	Packing cushion for 1503
4	SPAKC1086ACZZ	AF		D	Packing case for master
5	SPAKC1242ACZZ.	AP	N	D	Packing case
6.	TiNSE1068ACZZ	BB	N	D	Instruction book
7	RMEMR1006AC19	BF			Master media

3] MZ1C19(MZ1E02)

$\left.\begin{array}{|r|c|c|c|c|c|c|}\hline \text { NO. } & \text { PARTS CODE }\end{array} \begin{array}{c}\text { PRICE } \\ \text { RANK }\end{array} \begin{array}{c}\text { NEW } \\ \text { MARK }\end{array}\right)$

4 Tools

$\begin{array}{|c|c|c|c|c|c|c|}\hline \text { NO. } & \text { PARTS CODE } & \text { PRICE } \\ \text { RANK }\end{array}$ MARK $\left.\begin{array}{c}\text { PART } \\ \text { RANK }\end{array}\right]$
\qquad

SHARP

